• Title/Summary/Keyword: Increasing rate

Search Result 10,383, Processing Time 0.037 seconds

Implementation of Variable Threshold Dual Rate ADPCM Speech CODEC Considering the Background Noise (배경잡음을 고려한 가변임계값 Dual Rate ADPCM 음성 CODEC 구현)

  • Yang, Jae-Seok;Han, Kyong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3166-3168
    • /
    • 2000
  • This paper proposed variable threshold dual rate ADPCM coding method which is modified from the standard ADPCM of ITU G.726 for speech quality improvement. The speech quality of variable threshold dual rate ADPCM is better than single rate ADPCM at noisy environment without increasing the complexity by using ZCR(Zero Crossing Rate). In this case, ZCR is used to divide input signal samples into two categories(noisy & speech). The samples with higher ZCR is categorized as the noisy region and the samples with lower ZCR is categorized as the speech region. Noisy region uses higher threshold value to be compressed by 16Kbps for reduced bit rates and the speech region uses lower threshold value to be compressed by 40Kbps for improved speech quality. Comparing with the conventional ADPCM, which adapts the fixed coding rate. the proposed variable threshold dual rate ADPCM coding method improves noise character without increasing the bit rate. For real time applications, ZCR calculation was considered as a simple method to obtain the background noise information for preprocess of speech analysis such as FFT and the experiment showed that the simple calculation of ZCR can be used without complexity increase. Dual rate ADPCM can decrease the amount of transferred data efficiently without increasing complexity nor reducing speech quality. Therefore result of this paper can be applied for real-time speech application such as the internet phone or VoIP.

  • PDF

Using Simulation to Predict the Number of Recovery Bed and Waiting Time as Increasing Client for Sleep Endoscopy Check in Health Service Center (건강검진센터에서 위장 및 대장 수면 내시경 검사 증가에 따른 필요 회복실 침상 수 및 대기 시간 예측 시뮬레이션)

  • Lee, Hee-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.35-42
    • /
    • 2010
  • The increasing regular medical check up rate for early diagnosis in disease has increasing sleep endoscopy rate because of reduction with discomfort. The purpose of this study was to determine the number of recovery bed as increasing sleep endoscopy rate using check up time, waiting time & recovery time at a general hospital in Seoul. This study was analyzed using ARENA 10.0 program. At present and as increasing of sleep endoscopy rate 10%, 20% was increased recovery time, waiting time & the rate of bed inflection. So at present, the number of recovery bed has to increase for client's safety and as increasing of sleep endoscopy rate 10%, 20% has to increase 3 and then waiting time decreased in 2 minutes.

Synthesis of NaY Zeolites by Microwave and Conventional Heating (마이크로파 및 기존 가열 방법에 의한 제올라이트 NaY의 합성)

  • Choi, Ko-Yeol;Conner, W. Curtis
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2007
  • NaY zeolites synthesized by microwave heating were compared with those obtained by conventional heating. When the same temperature increasing rates were adopted in both heating methods, the microwave heating shortened the induction period and enhanced the rate of crystallization of NaY zeolites compared with the conventional heating. Irrespective of microwave radiation, the fast temperature increasing rate also shortened the induction time and enhanced the crystallization of NaY zeolites. The crystal sizes of NaY zeolites were large under the fast temperature raise of the reaction mixture and became larger by microwave radiation. At the same time, the fast temperature increasing rate has reduced the energy consumption due to the fast completion of reaction during the synthesis of NaY zeolite. The energy consumption in the conventional ethylene glycol bath was lower than that in the microwave oven with the same temperature increasing rate in this study, which means that the energy efficiency is not always high in microwave heating. If the temperature increasing rate is carefully controlled, however, NaY zeolite can be produced with high energy efficiency in the microwave oven.

Effect of Pre-ozonation on the Trans-membrane Pressure of Ceramic Membrane (전오존이 세라믹 막의 차압에 미치는 영향)

  • Bae, Byung-Uk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.656-661
    • /
    • 2011
  • The performance of a domestic ceramic membrane with pore size of $0.1{\mu}m$ was evaluated to produce drinking water. A pilot-scale ceramic membrane filtration plant with a capacity of $1m^3/d$ was operated at the filtration flux of $3.0m^3/m^2{\cdot}d$ to investigate the effect of both backwash interval and pre-ozonation on TMP (trans-membrane pressure) increasing rate. The TMP increased with increasing the backwash interval. However, the application of pre-ozonation reduced the TMP increasing rate remarkably. When 1 mg/L of ozone was dosed with contact time of 5 min, TMP increasing rate at the backwash interval of 1 hr was reduced by 30%. This result indicated that pre-ozonation was very effective in reducing membrane fouling. There was almost no change in TMP increasing rate when the ozone contact time was maintained in the range of 5 to 15 min. Increasing ozone concentration up to 3 mg/L showed beneficial effect on TMP increasing rate.

A Study on the Strain Rate and Temperature Dependence of Yield Stress of Al-Li Alloy (Al-Li합금의 항복응력에 대한 변형속도 및 온도의존성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.311-317
    • /
    • 2011
  • The effect of strain rate on the yield stress of an Al-Li alloy has been investigated at temperatures between 77 and 523 K and over the strain rate range from $1.77{\times}10^{-4}s^{-1}$ to $1.77{\times}10^{-2}s^{-1}$. At testing temperatures below 373 K, the yield stress is almost independent of strain rate at any aging stage. At testing temperatures above 373 K, the yield stress increases linearly with the logarithm of strain rate, and the strain rate dependence increases with increasing testing temperature. The yield stresses of under-aged alloy at temperatures between 373 and 473 K at high strain rates are greater than the yield stress at 77 K. For the alloy under-aged or aged nearly to its peak strength, the temperature range within which the positive temperature dependence of yield stress appears expands to the higher temperature side with increasing strain rate. The strain rate dependence of the yield stress is slightly negative at this aging stage. The yield stress of the over-aged alloy decreases monotonically with decreasing strain rate and with increasing testing temperature above 373 K. The modulus normalized yield stress is nearly constant at testing temperatures below 373 K at any strain rate investigated. And, strength depends largely both on the aging conditions and on the testing temperature. The peak positions in strength vs. aging time curves shift to the side of shorter aging time with increasing testing temperature. For the specimens aged nearly to the peak strength, the positive temperature dependence of yield stress is observed in the temperature range. The shift of peak positions in the aging curves are explained in terms of the positive temperature dependence of cutting stress and the negative temperature dependence of by-passing stress.

The Influence of Velocity and Temperature on Streaming Charging Tendeny of Insulting Oil (절연유의 유속과 유온이 유동대전에 미치는 영향)

  • Kim, Myung-Nyung;Kang, Seong-Hwa;Lim, Kee-Joe;Kang, Dou-Yol;Kim, Bong-Heup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.70-73
    • /
    • 1988
  • Influence of Velocity and Temperature on Streaming Electrification of Insulating Oil is investigated by injection method. Leakage current is increased slightly with increasing temperature in the temperature range 20 to $80^{\circ}C$ at low flow rate, however, it show a peak in the temperature 40 to $60^{\circ}C$ at high flow rate. Leakage current is also increased linearly with increasing flow rate in the flow rate range 1 - 31/min but thereafter, it is increased abruptly with increasing flow rate.

  • PDF

Effect of Specimen Size on Fatigue crack Growth Rate in Steels (강재의 피로균열전파율에 미치는 시험편 크기의 영향)

  • 안석화
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This paper describes the effect of specimen size on fatigue crack growth rate for the offshore structural high-tensile-strength steel BS4360 and machine structural steel SM45C. The purpose of the present study is to investigate the effect of stress ratio aspect ratio specimen width and specimen thickness of the fatigue crack growth behavior. Compact tension specimens with a LT orientation for BS4360 and SM45C steels were used, All testing was done at constant stress intensity factor range controlled fatigue crack growth condition. The investigation demonstrates that the fatigue crack growth rate is increased with increasing stress ratio and specimen thickness and is decreased with increasing specimen width. The fatigue crack growth rate is unaffected by aspect ratio until a/W=0.50 but is increased by increasing spect ratio from a/W=0.55.

  • PDF

A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe (황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구)

  • 이응조;노재호
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

Effect of Paclobutrazol on Growth, and High Temperature and Drought Stress in Perennial Ryegrass (Paclobutrazol 처리가 Perennial Ryegrass의 생육 및 고온과 건조 Stress에 미치는 영향)

  • 김태일;구자형;원동찬
    • Asian Journal of Turfgrass Science
    • /
    • v.3 no.1
    • /
    • pp.24-33
    • /
    • 1989
  • This study was conducted to investigate the effect of paclobutrazol [(2 RS , 3 RS )1-(4- chlor-ophenyl )-4, 4- dimethyl -2- (1, 2, 4- triazol -1- yl )- pentan -3-01] on the tolerance of hi-gh temperature and drought stress as related to growth retardation , iranspiration rate , soil water content , nitrogen level and photosynthetic rate in perennial ryegrass ( Loliurn perenne L . ' Omega H , ). Plants were given a 30 ml soil drench of paclohutrazol at the concentrations of 0, 0.01, 0.1, 1.0, 10.. 0, mg / 6 .5cm- diameter pot . The rcsults were as follows : 1. Increasing concentrations of paclohutrazul reduced plant height , leaf area , fresh weight and dry weight , hut increased chlorophyll content per unit area . The number of tillers and leaf width were not affected hy the paclobutrazol concentrations . 2. The proper concentration of paclohatrazol on growth retardation in perennial ryegrass was about I mq /pot , hut leaf deformity and severe growth retardation were shown at high concentration of 10 mq / pot . 3. Perennial ryegrasses grown at 30˚C were shown significantly short plant height and low leaf nitrogen level compared with those grown at 20˚C. Increasing concentrations of paclohutrazol at 20˚C increased nitrogen level hut it could not increase nitrogen level at 30˚C . 4. During the drought stress , increasing temperatures significantly promoted transpiration rate and wilting time . It took about 5 days at 20˚C and 3 days at 30˚C to reach wilting time of leaves from water stress treatment . Soil water contents at wilting time of non-treated controls were averaged 6. 871% at 20˚C and 6. 17% at 30˚C 5. Paclohutrazol reduced transpiration rate at high temperature and drought stress . Wilting appeared at the lower water content of soil according to increasing concentrations of paclobutrazol at 30˚C hut there were no differences among concentrations of at 20˚C. 6.Paclohutrazol treatment at 1 rag /pot reduced injury rate of leaves from 67.1 % and 100 % in control plants to 15.7% and 80% at 20˚C and 3010, respectively. 7. Photosynthetic rate per unit area was significantly reduced at high temperature . Paclohutrazol stimulated photosynthetic rate with increase of concentrations at 20˚C but there was no increasing effect at 30˚C.

  • PDF

The Study on the Physiological Differences for Major Fabaceae, Glycine soja and Glycine max in Korea (국내 주요 콩과식물인 돌콩(Glycine soja)과 백태(Glycine max) 간의 생리적 차이에 관한 연구)

  • Park, Jae-Hoon;Kim, Eui-Joo;You, Young-Han
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.2
    • /
    • pp.120-124
    • /
    • 2021
  • In order to understand the vegetative role of Glycine soja, we studied the basic physiological characteristics between Glycine soja and Glycine max. For this study, the light intensity (μmol m-2 s-1) on leaf surface, leaf temperature (℃), transpiration rate (mmol m-2 s-1), photosynthetic rate (μmol m-2 s-1), substomatal CO2 partial pressure (vpm) of Glycine soja and Glycine max were measured, and the quantum yield, photosynthesis rate per substomatal CO2 partial pressure were calculated. In the results of simple regression analysis, the increasing quantum yield decreases leaf temperature both of Glycine soja and Glycine max and the increasing leaf temperature decreases transpiration rate in case of Glycine soja. However, in case of Glycine max, the increasing leaf temperature decreases substomatal CO2 partial pressure, photosynthetic rate, and photosynthetic rate per substomatal CO2 partial pressure as well as transpiration rate. Also, increasing transpiration rate increases substomatal CO2 partial pressure while decreases photosynthetic rate per substomatal CO2 partial pressure. Thus, Glycine soja is relatively more easily adaptable to severe environments with low soil nutrients and high light levels. Compared to Glycine max susceptible to water loss due to a water-poor terrestrial habitat, the physiological traits of Glycine soja has a high average transpiration rate and are less susceptible to water loss will act as a factor that limits the habitat according to soil moisture.