• Title/Summary/Keyword: Inclined Width Ratio

Search Result 33, Processing Time 0.022 seconds

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.162-169
    • /
    • 1999
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, groove angle.

  • PDF

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.425-431
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, and groove angle.

Experiment of single screw piles under inclined cyclic pulling loading

  • Dong, Tian Wen;Zheng, Ying Ren
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.801-810
    • /
    • 2015
  • The ultimate pullout capacity under inclined dynamic loading is an important measure of the destruction degree of vertical screw piles (anchors) under dynamic actions. Based on the static and dynamic tests on two kinds of model screw piles, the ultimate bearing capacity was researched considering different distance-width ratio of blade (D/W) and preloading ratio. The results compared well with other experimental data available in the literature. This research reveals that D/W might determine the failure model of the piles (anchors), for example D/W = 3.14 or 5; a critical dynamic-static loading ratio (DSLR) existed in the experiments. The critical DSLR was reached under the conditions of 40%~60% preloading (D/W = 3.14) or 20%~40% preloading (D/W = 5), respectively.

Heat Transfer and Friction Behaviour in a Channel with an Inclined Perforated Baffle

  • Krishna Putra, Ary Bachtiar;Ahn, Soo-Whan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.70-76
    • /
    • 2008
  • The effects of the inclined perforated baffles on the distributions of the local heat transfer coefficients and friction factors for air flows in a rectangular channel were determined for Reynolds numbers from 23,000 to 57,000. Four different types of the baffle are used. The inclined baffles have the width of 19.8cm, the square diamond type hole having one side length of 2.55cm, and the inclination angle of $5^{\circ}$, whereas the corresponding channel width-to-height ratio was 4.95. Results show that the heat transfer and friction factor depend significantly on the number of baffle holes and Reynolds number. The friction factor decreases with increasing Reynolds number and the number of holes on the baffle, and the heat transfer performance of baffle type II (3 hole baffle) has the best value.

Experimental Investigation on the Serration Process (돌기성형공정에 관한 실험적 연구)

  • Koo, H.S.;Park, Y.S.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • In this paper, experimental investigation has been performed to analyze the forming process of toothed or serrated sheets, which is used as strap engaging surface of the seal to secure together overlapping portions of steel or plastic strapping ligature. Serration formed on the strap engaging surface of the seal prevent from relative slipping between overlapping ligatures after closing the seal. The geometry of tooth on the strap engaging surface is directly related to the quality of securing overlapping ligatures together. Inclined indentation followed by scratching operation has been proposed and applied to the experiments. Punch entry and face angles are selected as process variables to see the influence of these variables on the tooth geometry. Five different punch entry angles have been applied to experiments and three different punch face angles have been selected for each case of punch entry angle. Clay is selected as model material for experiments. Experimental results are summarized in terms of tooth height, tooth width, and aspect ratio such as tooth height to width ratio, respectively.

An investigation on flow characteristics of two dimensional inclined wall attaching offset jet (단이 진 경사벽면에 부착되는 2차원 제트유동에 관한 연구)

  • 송흥복;심재경;윤순현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.52-66
    • /
    • 1998
  • An experimental study on the flow characteristics was performed for a two-dimensional turbulent wall attaching offset jet at different oblique angles to a surface. The flow characteristics were investigated by using a split film probe with the modified Stock's calibration method. The jet mean velocity, turbulent intensity, wall static pressure coefficient profiles, and time-averaged reattachment point were measured at the Reynolds number Re (based on the nozzle width, D) ranging from 17700 to 53200, the offset ratio H/D from 2.5 to 10, and the inclined angle .alpha. from 0.deg. C to 40.deg. C. The Correlations between the maximum pressure position, minimum pressure position, and reattachment point and offset ratios, and inclined angles are presented.

  • PDF

Stress Intensity Factors of Combined Mode(Mode I/II) Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드(모드 I/II) 균열의 응력확대계수)

  • 조명래;양원호;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1875-1882
    • /
    • 1993
  • Variable thickness plates are commonly used as structural members in the majority of industrial sectors. Previous fracture mechanics researches on variable thickness plates were limited to mode I loading cases. In practice, however, cracks are usually located inclined to the loading direction. In this respect, combined mode(mode I/II) stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a slant edge crack were chosen. The parameters used in this study were dimensionless crack $length{\lambda}$, slant $angle{\alpha}$, thickness $ratio{\beta}$ and width ratio{\omega}$. Stress intensity factors were calculated by crack opening displacement(COD) and crack sliding displacement(CSD)method proposed by Ingraffea and Manu.

A Study on Back Bead Formation in Inclined-up Position of Flasma An Orbital Welding (플라즈마 아크 오비탈 용접의 경사상진자세에서 이면비드 형성에 관한 연구)

  • Kim, Hyo-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • In the circumferential welding of pipe, welding phenomenon changes with the position of pipe. Especially in the overhead position, back bead of vertical-up position would be sunk. To investigate the size of back bead and keyhole with the change of the flow rate of pilot and shield gas at each position, bead-on plate welds were conducted on 6mm thickness SS400 with inclined-up position. When the rest of welding conditions remained constant, the width of back bead was increased as the flow rate of pilot gas was increased. And back bead tended to convex as the flow rate of shield gas was increased.

Analysis of an Inclined Crack in Finite Composite Plate Under Mixed Mode Deformation (혼합모우드 변형하에 있는 복합재료 유한평판의 경사진 균열해석)

  • 염영진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.625-635
    • /
    • 1989
  • Mixed mode fracture problem is analyzed for the finite orthotropic plate where an inclined crack parallel to the fiber direction is centrally placed. Modified mapping collocation method with both uniform stress and uniform displacement boundary conditions is utilized to calculate stress intensity correction factors for glass/epoxy and graphite/epoxy composites. Computed results are presented for selected combinations of crack length to width ratio L/W and plate aspect ratio H/W with various fiber orientations.

Pullout capacity of shallow inclined anchor in anisotropic and nonhomogeneous undrained clay

  • Bhattacharya, Paramita
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.825-844
    • /
    • 2017
  • This study aimed to find out the pullout capacity of inclined strip anchor plate embedded in anisotropic and nonhomogeneous fully saturated cohesive soil in undrained condition. The ultimate pullout load has been found out by using numerical lower bound finite element analysis with linear programming. The undrained pullout capacity of anchor plate of width B is determined for different embedment ratios (H/B) varying from 3 to 7 and various inclination of anchor plates ranging from $0^{\circ}$ to $90^{\circ}$ with an interval of $15^{\circ}$. In case of anisotropic fully saturated clay the variation of cohesion with direction has been considered by varying the ratio of the cohesion along vertical direction ($c_v$) to the cohesion along horizontal direction ($c_h$). In case of nonhomogeneous clay the cohesion of the undrained clay has been considered to be increased with depth below ground surface keeping $c_v/c_h=1$. The results are presented in terms of pullout capacity factor ($F_{c0}=p_u/c_H$) where $p_u$ is the ultimate pullout stress along the anchor plate at failure and $c_H$ is the cohesion in horizontal direction at the level of the middle point of the anchor plate. It is observed that the pullout capacity factor increases with an increase in anisotropic cohesion ratio ($c_v/c_h$) whereas the pullout capacity factor decreases with an increase in undrained cohesion of the soil with depth.