• Title/Summary/Keyword: Inclined Nozzle

Search Result 30, Processing Time 0.022 seconds

Performance of Fire Extinguishing of Water Mist Nozzle for Power Transformer Fire Scenario (주 변압기실 화재시나리오에 적용한 미세물분무 노즐의 소화성능)

  • Lee, Kyoung-Duck
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.46-54
    • /
    • 2006
  • Fire extinguishing experiment was conducted with water mist nozzle in case of the pool fire, cascade fire and spray fire on flammable liquid of class B whether water mist system can be effective system for power transformer fire scenario. In the event of a pool fire, flow rate and time to extinguish was inclined to be increased according to the obstruction rate of ignition space. Furthermore, the performance of fire extinguishing depended upon the spraying angle of the nozzles. In case of cascade fire, the effect of extinguishment was began to show from a combustion pan filled with fuel and fuel flowing plate later on.

Numerical Analysis of Combustion Field for Different Injection Angle in End-burning Hybrid Combustor (End-burning 하이브리드 연소기 인젝터 분사각에 따른 연소 유동장의 수치적 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1108-1114
    • /
    • 2007
  • The effect of oxidizer injection angle on the combustion characteristics of end-burning hybrid combustor is numerically investigated. Besides the previously studied parameter(injector arrangement, port diameter and O/F ratio), three different injection angle are considered: parallel angle to fuel surface(Case 1), +30 degree inclined angle toward the fuel(Case 2) and 30 degree inclined angle toward the nozzle(Case 3). It is found that Case 2 has the best mixing pattern in the upstream area but has the worst combustion efficiency since non negligible amount of unburned fuel is expelled from the nozzle. In contrast, though Case 1 and Case 3 showed relatively low mixing effect than the Case 2, they had high combustion efficiency. The comparison of numerical results between Case 1 and Case 3 demonstrate that no major difference is encountered, however, Case 1 is expected to have the best combustion efficiency due to the low residence time of the Case 3 injector which heads toward the nozzle.

A Study on Cladding on an Inclined Cylindrical Surface using DED Additive Manufacturing (DED 적층 방식을 활용한 원통면 경사 적층에 관한 연구)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.91-97
    • /
    • 2022
  • The Directed Energy Deposition (DED) is a representative metal additive manufacturing method. Owing to its strong point of repairment, its application is gradually spreading in aerospace applications, power generation, military components, and mold making. 5-axis cladding is needed to repair damage, such as wear and scratches on cylindrical surfaces to circular-shaped parts, including sleeves and liners. Furthermore, the condition of cladding on inclined parts must also be considered to prevent interference between the nozzle and the part. In this study, the effects of changes in scanning speed due to the 5-axis control system and differences from the height of laser beam irradiation due to inclination are evaluated among the items that should be additionally considered in 5-axis cladding compared to 3-axis cladding. Moreover, the trends of the width and height of the clad are identified by different tilting angles via single line cladding. Lastly, cladding methods on cylindrical surfaces at various angles are proposed to enhance the clad quality and post-processing efficacy. These results can be applied with 5-axis cladding on inclined surfaces, including cylindrical surfaces.

Heat Transfer Characteristics of Inclined Jet Impinging on a Pin Fin Heat Sink (경사진 충돌제트를 이용한 핀 휜 히트싱크의 열특성 연구)

  • Hong, Ki-Ho;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.961-967
    • /
    • 2004
  • An inclined jet impinging on a pin fin heat sink is proposed and investigated experimentally. To investigate the flow pattern, flow visualization using fluorescence and velocity measurement using particle image velocimetry(PIV) are conducted with water. The jet impinges over a wide span of the heat sink with a large recirculation in the upper free space and occasionally with another smaller one in the upstream corner. Further, thermal experimentation is conducted using air to obtain temperature profiles using a thermocouple rake in the air and using thermal image on the heat sink back plate, with impinging angles of 35, 45 and 55 degrees. The Reynolds number range based on the nozzle slot is varied from 1507 to 6405. The results show that impinging angle of 55 degree shows the largest heat transfer capability. The results of thermal experiment are compared and discussed with those of flow visualization.

An Investigation on Heat transfer Characteristics of Inclined Wall Attaching Offest jet (경사진 벽부착 제트의 열전달 특성에 대한 연구)

  • 심재경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.200-209
    • /
    • 1998
  • Experiments have been conducted to determine heat transfer characteristics for a two-dimen-sional turbulent wall attaching offset jet at different oblique angles to a flat surface. The local Nusselt number distributions were measured using liquid crystal as a temperature sensor. Wall static pressure coefficient profiles were measured at the Reynolds number Re 53200(based on the nozzle width, D) the offset ratio H/D from 2.5 to 10 and the oblique angle a from $0^{\circ}$, to $40^{\circ}$ It is observed that the maximum Nusselt number point occurs slightly upstream of time-averaged reattachment point for all oblique angles. The correlations between the maximum Nusselt number and Reynolds number offset ration and oblique angle are presented.

  • PDF

Transition of Rivulet Flow from Linear to Droplet Stream

  • Kim, Ho-Young;Kim, Jin-Ho;Kang, Byung-Ha;Lee, Seung-Chul;Lee, Jae-Heon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.147-152
    • /
    • 2002
  • When a liquid is supplied through a nozzle onto a relatively non-wetting inclined solid surface, a narrow rivulet forms. There exist several regimes of rivulet flow depending on various flow conditions. In this paper, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified.

Turbulent Heat Transfer of an Oblique Impinging Jet on a Concave Surface (오목표면에 분사되는 경사충돌제트의 난류열전달 현상에 관한 연구)

  • 임경빈;최형철;이세균;최상경;김학주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.371-380
    • /
    • 2000
  • The turbulent heat transfer from a round oblique impinging jet on a concave surface were experimentally investigated. The transient measurement method using liquid crystal was used in this study. In this measurement, a preheated wall was suddenly exposed to an impinging jet while recording the response of liquid crystals to measure surface temperature. The Reynolds numbers were 11000, 23000 and 50000, nozzle-to-surface distance ratio was from 2 to 10 and the surface angles were a =$0^{\circ}\;15^{\circ},\;30^{\circ}and\;40^{\circ}$. Correlations of the stagnation point Nusselt numbers with Reynolds number, jet-to-surface distance ratio and dimensionless surface angle, which account for the surface inclined angle, are presented. The maximum Nusselt numbers, in this experiment, occurred in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. In this experiment, the maximum displacement is about 0.7 times of the jet nozzle diameter when surface curvature, D/d is 10.

  • PDF

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

AN OPTIMUM DESIGN STUDY OF INTERLACING NOZZLE BY ANALYZING FLUID FLOW INSIDE INTERLACING NOZZLES

  • Juraeva Makhsuda;Ryu Kyung Jin;Kim Sang Dug;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.93-97
    • /
    • 2005
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. This study investigates the effect of interlacing nozzle geometry on the interlacing process. The geometries of interlacing nozzles with multiple air inlets located across the width of a yarn channels are investigated. The basic interlacing nozzle is the yarn channel, with a perpendicular single air inlet in the middle. The yarn channel shapes are cross sections with semicircular or rectangular shapes. This paper presents three doubled sub air inlets with main air inlet and one of them is slightly inclined doubled sub air inlets with main air inlet. The compressed air coming out from the inlet hits the opposing wall of the yarn channel, divides into two branches, flows trough the top side of yarn channel, joins with the compressed air coming out from the sub air inlet and then creates two free jets at both ends of the yarn channel. The compressed air moves in the shape of two opposing directional vortices. The CFD-FASTRAN was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this paper.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF