• Title/Summary/Keyword: Incident Water Wave

Search Result 213, Processing Time 0.031 seconds

Measurements of Backscattering Strength from Various Shapes of Sediment Surfaces and Layers (퇴적층 구성 매질 및 표면 형태에 따른 후방산란 강도 측정)

  • 김형수;최지웅;나정열;석동우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.78-87
    • /
    • 2003
  • High-frequency (126-㎑) bottom backscattering measurements with various bottom types were conducted at the water tank in Ocean Acoustic Laboratory, Hanyang University. For the purpose of investigating the energy distribution of bottom scattering with various bottom types, the sediment was varied with gravel, sand, sandy mud and mixed bottoms. To examine the anisotropic nature of the scattering due to the orientations of bottom ripple, the footprints were made transverse and longitudinal to the direction of incident wave. The total scattering characteristics are that the larger grazing angles the larger backscattering strengths become and backscattering strengths for a transverse ripple case are higher than those of longitudinal ripple case. finally, the variations of scattering strength depend mainly on the ripple's orientation.

Measurement of decoupling performance of an multi-layered underwater decoupling material (다층구조 수중 방음재의 디커플링성능 측정방법에 대한 고찰)

  • Kim, SangRyul;Kim, Jae-Seung;Kim, Jae-Ho;Ham, Il-Bae;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.437-444
    • /
    • 2012
  • In this paper, the measurement method of the decoupling performance of a underwater decoupling material is studied. First, the simple vibro-acoustic coupled model of a multi-layered underwater decoupling material attached to a plate is analytically derived using impedance transfer matrix. Two test methods are introduced using the theoretical expression of the simple model. One is based on the ratio of the plate vibration and the radiated pressure under impact excitation of the plate. The other is based on the reciprocity theorem and uses the ratio of the incident pressure and the plate vibration under projector excitation in water. Some measurements are carried out according to the test methods using a pulse tube. The test results show the advantages and disadvantages of two methods. It is also shown that the combination of impact and projector excitation methods may be a useful tool to evaluate the performance of a underwater decoupling material.

  • PDF

Numerical Study on Compressible Multiphase Flow Using Diffuse Interface Method (Diffuse Interface Method를 이용한 압축성 다상 유동에 관한 수치적 연구)

  • Yoo, Young-Lin;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • A compressible multiphase flow was investigated using a DIM consisting of seven equations, including the fifth-order MLP and a modified HLLC Riemann solver to achieve a precise interface structure of liquid and gas. The numerical methods were verified by comparing the flow structures of the high-pressure water and low-pressure air in the shock tube. A 2D air-helium shock-bubble interaction at the incident shock wave condition (Mach number 1.22) was numerically solved and verified using the experimental results.

Analytical Solution for Long Waves on Axis-Symmetric Topographies (축 대칭 지형 위를 전파하는 장파의 해석해)

  • Jung, Tae-Hwa;Lee, Changhoon;Cho, Yong-Sik;Lee, Jin-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.413-419
    • /
    • 2008
  • In this study, we develop analytical solutions for long waves propagating over several types of axis-symmetric topographies where the water depth varies in an arbitrary power of radial distance. The first type is a cylindrical island mounted on a shoal. The second type is a circular island. To get the solution, the methods of separation of variables, Taylor series expansion and Frobenius series are used. Developed analytical solutions are validated by comparing with previously developed analytical solutions. We also investigate various cases with different incident wave periods, radii of the shoal, and the powers of radial distance.

Reliability Analysis for Fracture of Concrete Armour Units (콘크리트 피복재의 단면파괴에 대한 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • A fracture or breakage of the concrete armor units in the primary cover layer of breakwaters is studied by using the reliability analysis which may be defined as the structural stability. The reliability function can be derived as a function of the angle of rotation that represents the rocking of armor units quantitatively. The relative influences of all of random variables related to the material and geometric properties on the fracture of armor units is analyzed in detail. In addition, the probability of failure for the fracture of individual armor unit can be evaluated as a function of the incident wave height. Finally, Bernoulli random process and the allowable fracture ratio may be introduced together in this paper, by which the probability of failure of a breakwater due to the fracture of armer units can be obtained straightforwardly. It is found that the probability of failure of a breakwater due to the fracture of armor units may be varied with the several allowable fracture ratios. Therefore, it should be necessary to consider the structural stability as well as the hydraulic stability for the design of breakwaters with multi-leg slender concrete armor units of large size under wave action in deep water.

Nonlinear Transformation of Long Waves at a Bottom Step (해저단에서의 장파의 비선형 변형)

  • Mrichina, Nina R.;Pelinovsky, Efim N.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.161-167
    • /
    • 1992
  • We consider the preparation of long finite amplitude nondispersive waves over a step bottom between two regions of finite different depths. Two dimensional motion is assumed. with the wave crests parallel to the step, and irrotational flow in the inviscid fluid is considered. To describe the transformation of finite amplitude waves we use the finite-amplitude shallow-water equations, the conditions of mass flow conservation and pressure continuity at the cut above the step in Riemann's variables. The equations define four families of curves-characteristics on which the values of the Riemann's invariants remain constant and a system of two nonlinear equations that relates the amplitudes of incident reflected and transmitted waves. The system obtained is difficult to analyze in common form. Thus we consider some special cases having practical usage for tsunami waves. The results obtained are compared with the long wave theory and significant nonlinear effects are found even for quite small amplitude waves.

  • PDF

Laboratory Observations of Nearshore Flow Patterns Behind a Single Shore-Parallel Submerged Breakwater (해안선에 평행한 단일 잠제 후면 연안 흐름패턴 관측 수리실험)

  • Choi, Junwoo;Roh, Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • In order to understand the efficacy of submerged breakwater constructed for the beach protection, laboratory experiments were carried out by observing the characteristics of flow around a single shore-parallel submerged breakwater. The velocity field near the shoreline was measured by utilizing the LSPIV (Large-Scale Particle Image Velocimetry) technique, and mean surface and wave height distributions were observed around the submerged breakwater, according to various combinations of incident waves and submerged breakwaters. In this experiment, it was found that the mean flow pattern behind the submerged breakwater was determined by the balance among the gradients of mean water surface and excess wave-momentum flux (i.e., radiation stress tensors) which interact with the wave-induced current developed by the gradients on the rear and the side of the submerged breakwater. The divergent and convergent flow patterns behind the submerged breakwater (i.e., accretion and erosion response) of the numerical study of Ranasinghe et al.(2010) were observed in the measured velocity distributions, and their empirical formula mostly agreed with the experimental results. However, for some cases in this experiment, it was difficult to say that the flow pattern was one of them and was agreed with the empirical formula.

Wintertime Extreme Storm Waves in the East Sea: Estimation of Extreme Storm Waves and Wave-Structure Interaction Study in the Fushiki Port, Toyama Bay (동해의 동계 극한 폭풍파랑: 토야마만 후시키항의 극한 폭풍파랑 추산 및 파랑 · 구조물 상호작용 연구)

  • Lee, Han Soo;Komaguchi, Tomoaki;Yamamoto, Atsushi;Hara, Masanori
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.335-347
    • /
    • 2013
  • In February 2008, high storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the East Sea (ES) caused extensive damages along the central coast of Japan and along the east coast of Korea. This study consists of two parts. In the first part, we estimate extreme storm wave characteristics in the Toyama Bay where heavy coastal damages occurred, using a non-hydrostatic meteorological model and a spectral wave model by considering the extreme conditions for two factors for wind wave growth, such as wind intensity and duration. The estimated extreme significant wave height and corresponding wave period were 6.78 m and 18.28 sec, respectively, at the Fushiki Toyama. In the second part, we perform numerical experiments on wave-structure interaction in the Fushiki Port, Toyama Bay, where the long North-Breakwater was heavily damaged by the storm waves in February 2008. The experiments are conducted using a non-linear shallow-water equation model with adaptive mesh refinement (AMR) and wet-dry scheme. The estimated extreme storm waves of 6.78 m and 18.28 sec are used for incident wave profile. The results show that the Fushiki Port would be overtopped and flooded by extreme storm waves if the North-Breakwater does not function properly after being damaged. Also the storm waves would overtop seawalls and sidewalls of the Manyou Pier behind the North-Breakwater. The results also depict that refined meshes by AMR method with wet-dry scheme applied capture the coastline and coastal structure well while keeping the computational load efficiently.

Field Observations of Spatial Structure of Hydrodynamics Including Waves and Currents in the Haeundae Coast (해운대의 파랑 및 흐름 구조의 특성파악을 위한 현장 관측실험)

  • Do, Kideok;Yoo, Jeseon;Lee, Hee Jun;Do, Jong-Dae;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.228-237
    • /
    • 2015
  • Field observations were conducted to collect hydrodynamic and morphological data, which are needed to account for mechanisms of bathymetry changes caused by physical forcings, in Haeundae beach. In order to quantitatively describe characteristics of wave transformations and current patterns in space in winter and summer, in-situ sensors for measuring waves and current profiles were installed at three locations in the cross-shore direction and also three locations in the along-shore direction. As for the results of wave measurements, waves with main direction from the east dominate in winter while waves are incident from the S and the ESE in summer. Analysis of current data reveals that currents over the study domain are considerably influenced by a pattern of tidal motions, thereby, mainly oscillating in the direction of tidal currents, i.e., east-west directions, in both winter and summer. Currents tend to be influenced by local bathymetry in the shallow water region, with the direction changed along the depth contours and the magnitude reduced as they approach the shoreline. The results analysed from the hydrodynamic data through this study can be further combined with the morphological and bathymetry data, leading to the quantification of seasonal sediment transport rates and sand budget changes.

Computational and Experimental Studies on Added Resistance of AFRAMAX-Class Tankers in Head Seas (선수파 중 AFRAMAX급 유조선의 부가저항에 대한 실험과 수치계산)

  • Oh, Seunghoon;Yang, Jinho;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.471-477
    • /
    • 2015
  • When a ship sails in a seaway, the resistance on a ship increases due to incident waves and winds. The magnitude of added resistance amounts to about 15–30% of a calm-water resistance. An accurate prediction of added resistance in waves, therefore, is essential to evaluate the performance of a ship in a real sea state and to design an optimum hull form from the viewpoint of the International Maritime Organization (IMO) regulations such as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI). The present study considers added resistance problem of AFRAMAX-class tankers with the conventional bow and Ax-bow shapes. Added resistance due to waves is successfully calculated using 1) a three-dimensional time-domain seakeeping computations based on a Rankine panel method (three-dimensional panel) and 2) a commercial CFD program (STAR-CCM+). In the hydrodynamic computations of a three-dimensional panel method, geometric nonlinearity is accounted for in Froude-Krylov and restoring forces using simple wave corrections over exact wet hull surface of the tankers. Furthermore, a CFD program is applied by performing fully nonlinear computation without using an analytical formula for added resistance or empirical values for the viscous effect. Numerical computations are validated through four degree-of-freedom model-scale seakeeping experiments in regular head waves at the deep towing tank of Hyundai Heavy Industries.