• Title/Summary/Keyword: Incident Angle

Search Result 617, Processing Time 0.027 seconds

Analysis of Solar Radiation on Inclined Surfaces with various Directions for the Installation of Solar Thermal Systems (태양열시스템 설치를 위한 방위별 경사면일사량 분석)

  • Jo, Dok-Ki;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.171-173
    • /
    • 2008
  • The amount of incident solar rays on inclined surfaces with various directions has been widely utilized as important data in installing solar collector, hot water system, and designing solar buildings and house. This is because the performance of the solar energy applied systems is much affected by angle and direction of incident rays. Recognizing those factors mentioned above are of importance, actual experiment has been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. The results obtained in this research could be used in designing optimal solar thermal systems.

  • PDF

A Study on the Analysis of Solar Radiation on Inclined Surfaces (방위별 경사면일사량 분석에 관한 연구)

  • Jo, D.K.;Chun, I.S.;Jeon, M.S.;Kang, Y.H.;Auh, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.19-24
    • /
    • 2001
  • The amount of incident solar rays on inclined surfaces with various directions has been widely utilized as important data in installing solar collector, hot water system, and photovoltaic module, and designing solar buildings and house. This is because the performance of the solar energy applied systems is much affected by angle and direction of incident rays. Recognizing those factors mentioned above are of importance, actual experiment has been peformed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. The results obtained in this research could be used in designing optimal solar systems.

  • PDF

A Study on the Analysis of Solar Radiation on Inclined Surfaces for the Installation of PV Systems (PV시스템 설치를 위한 경사면 태양광에너지 분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • The amount of incident rays over inclination according to direction has been widely utilized as important data in installing photovoltaic systems. This is because the performance of the photovoltaic systems in much affected by angle and direction of incident rays. Recognizing that factors mentioned above are of importance, actual experiment on the moving route of the sun have been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. After all, the standard for designing highly optimized photovoltaic systems will be provided for designers and employees working in the photovoltaic module related industries.

Flow simulations of the wet station dryer module for the solar cell manufacturing (태양전지 제조용 세정장비의 건조모듈 유동해석)

  • Hong, Joo-Pyo;Lim, Ki-Sup;Yoon, Jong-Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.109-113
    • /
    • 2011
  • Hot air flow simulations of the wet station dryer module for the solar cell cleaning were conducted. Air incident angles such as to the substrates ($45^{\circ}$), to the bottom ($90^{\circ}$), and to the wall ($135^{\circ}$) were considered. Based on the simulated velocity and temperature profiles, appropriate incident angle was proposed, and it was well matched to experimental results. Additionally, uniform and non-uniform air hole sizes of the tube were compared for the uniform air flow distribution through the batch.

Behavior of Regular Waves and Multi-Directional Random Waves Passing a Breakwater (방파제를 통과하는 규칙파와 다방향 불규칙파랑의 거동)

  • Park, Sang-Il;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-442
    • /
    • 2008
  • Diffraction of multi-directional random waves passing semi-infinite breakwater is investigated by using analytic solution derived by Penny and Prices(1952). An irregylarity of period and incident angle of waves and regular periods for regular waves are considered in addition by expanding from the past study which used only monochromatic wave in general. The Bretschneider-Mitsuyasu frequency spectrum and Mitsuyasu directional spectrum are used for incident waves. And diffraction of multi-directional random waves is reappeared by decomposing numerical results of several monochromatic waves which have variable period and incident angle. Analytic solution on the diffraction of regular waves and multi-directional random waves calculated in this study.

  • PDF

Incident-angle-based Selective Tunability of Resonance Frequency in Terahertz Planar Metamolecules

  • Lim, A Young;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.590-597
    • /
    • 2022
  • We carry out numerical simulations of the responses of planar metamaterials composed of metamolecules under obliquely incident terahertz waves. A Fano-like-resonant planar metamaterial, with two types of resonance modes originating from the two meta-atoms constituting the meta-molecules, exhibits high performance in terms of resonance strength, as well as the outstanding ability to manipulate the resonance frequency by varying the incident angle of the terahertz waves. In the structure, the fundamental electric dipole resonance associated with Y-shaped meta-atoms is highly tunable, whereas the inductive-capacitive resonance of C-shaped meta-atoms is relatively omnidirectional. This is attributed to the electric near-field coupling between the two types of meta-atoms. Our work provides novel opportunities for realizing terahertz devices with versatile functions, and for improving the versatility of terahertz sensing and imaging systems.

Measurement of Skin Dose from Using the Treatment Immobilization Devices (치료 보조기구 사용 시 후 방향 피부선량 측정)

  • Je, Jae-Yong;Park, Chul-Woo;Noh, Kyung-Suk
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.107-110
    • /
    • 2009
  • The research was about the relation between the dorsal side dose measured by using the phantom body (Alderson Rando Phantom) and factors like contacted material of the patients, the size of the field, angle of incidence. Compared with mylar (tennis racket), the dose on $10{\times}10\;cm^2$ field size of cotton was increased by 2% and by 8% in the case of breast board. In the case of $15{\times}15\;cm^2$ field size, the dose was increased by 6% compared with $10{\times}10\;cm^2$ size. The field size of $20{\times}20\;cm^2$ resulted in 10% increase of dose, while $5{\times}5\;cm^2$ produced 13% decrease. Compared with incident angle $0^{\circ}$, the cases for the incident angle $5^{\circ}$ had 0.4% less dose for breast board, 0.5% for tennis racket, 1.1% for cotton. The cases for the incident angle $10^{\circ}$ had 1.5% less dose for breast board, 1.9% for tennis racket, 2.6% for cotton. For the incident angle $15^{\circ}$, breast board, tennis racket, cotton caused decrease of dose by 3.9%, 2.6%, 3.86% respectively. Resultantly carbon material can cause more skin dose in treatment field. By the results of this study, we recommend that one should avoid the contact between the carbon material and skin.

  • PDF

Characteristics of Optical Phase Conjugate Wave Generated by Self-Pumping in Photorefractive $BaTiO_3$ Single Crystal ($BaTiO_3$ 광굴절 결정에서 자기 펌핑에 의해 발생되는 위상공액파의 특성)

  • 이장두
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.157-161
    • /
    • 1990
  • Self-pumped phase conjugation(SPPC) in BaTiO3 single crystal is experimentally investigated at a wavelength of 514.5nm from an Ar+ laser. The incident Gaussian beam enters the crystal as an extraordinary ray. The maximum SPPC reflectivity of 48% is obtained at incident angle 80 degree. the SPPC wave demonstrates good image reconstruction. The response time (r) of SPPC wave as a function of incident intensity is measured to be r=36$\times$I-0.79sec.

  • PDF

A Study on the Nonreciprocal Transmissivity of a Photorefractive Crystals (광굴절 결정체의 비가역적 투과도에 관한 연구)

  • 조제황;김은수;양인응
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1257-1261
    • /
    • 1989
  • The propagation of electromagnetic waves in a photorefractive crystal is considered. The electromagnetic waves(i.e. TE waves and TM, waves) incident upon the crystal at any incident angle are coupled with reflected waves due to the Fresnel's reflectance in the photorefractive crystal. This coupling leads to a nonreciprocal optical transmissivity. About some incident angles, the optical transmissivity of TE and TM waves in regard to the coupling strength is investigated.

  • PDF

Determination of Incident Angle and Position of Optimal Mode Ultrasonic Beam for Flaw Detection in Anisotropic and Inhomogeneous Weldments by Ray Tracing

  • Zhao, Xinyu;Song, Sung-Jin;Kim, Hak-Joon;Gang, Tie;Kang, Suk-Chull;Choi, Yong-Hwan;Kim, Kyung-Cho;Kang, Sung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • Ultrasonic inspection of austenitic steel weldments is a truly difficult task due to complicated wave propagation phenomena such as beam skewing, splitting and distortion. In order to understand these phenomena and design proper inspection procedures, simulation is increasingly paid more attention to. This article addresses a ray tracing based approach to determine incident angle and position of optimal wave mode ultrasonic beam for flaw detection in anisotropic and inhomogeneous austenitic steel weldments. Specially, the optimal mode of ultrasonic wave wave is selected by ray tracing simulation, and an optimization approach based on ray tracing and bi-section search is proposed in order to find the ray path connecting two given points in weldments. With help of this approach, the optimal incident angle and position of ultrasonic beam can be determined for a given flaw position.