• Title/Summary/Keyword: Incident Angle

Search Result 617, Processing Time 0.027 seconds

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.729-738
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great importance for the sonar performance in ship. The purpose of this study was to investigate the measurement and analysis method for the acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal were discussed.

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1183-1189
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great Importance for the sonar performance in ship. The purpose of This study was to investigate the measurement and analysis method for me acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal wet-e discussed

  • PDF

Analysis of Harmonic Wave Generation in Nonlinear Oblique Crack Surface (비선형 경사 균열면에서의 고조파 발생 특성 해석)

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.376-387
    • /
    • 2012
  • Based on the nonlinear spring model coupled with perturbation method, 2nd harmonic waves generated by oblique incident ultrasound on nonlinear crack interface were calculated and investigated. Reflected and transmitted waves from the interface were determined and analyzed at various angle of incidence for the cracks with different interfacial stiffness in order to estimate the 2nd harmonic generation of incident ultrasound. It was shown in computer simulation that the 2nd harmonic components changed much with the increase of incidence angle in both reflected and transmitted wave, but became very small when the incident angle approached toward 90 degree. It can be concluded that the 2nd harmonic component of reflected wave has a meaningful amplitude as much as the transmitted 2nd harmonic wave from partly closed crack.

Prediction of Output Power for PV Module with Tilted Angle and Structural Design (태양광 모듈의 구조디자인과 설치각도에 따른 출력예측)

  • Ko, Jae-Woo;Yun, Na-Ri;Min, Yong-Ki;Jung, Tae-Hee;Won, Chang-Sub;Ahn, Hyung-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.371-375
    • /
    • 2013
  • A new model about output power prediction of PV module with various tilted angles and cell to cell distances has been proposed in this paper. Light intensity arrived on a solar cell could be changed by characteristics of PV module materials. Refractive indices, thickness and absorption coefficients of glass, EVA, solar cell and Backsheet are used to predict output. Also, the incident angle of light is changed 0 to 90[$^{\circ}$] and cell to cell distances are 5, 10 15[mm]. Two types of light incident on a solar cell are considered which are direct to a solar cell and reflected from Backsheet. The intensity of the incident light directly into the solar cell is reduced through glass and EVA about 17.5[%] in theoretical way. It has an error of 2.26[%] compared with experimental result. The results for compare theoretical with experimental data is validated within the error of 6.3[%]. This paper would be a research material to predict output power when the PV module is installed outdoor or a building.

Electromagnetic Transmission through Slits in Two Adjacent Conducting Parallel-Plates (근접하는 도체 평행 평판의 슬릿을 통한 전자파 투과)

  • Lee, Jong-Ig;Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2009
  • In this paper, the problem of electromagnetic transmission through slits in two parallel conducting plates which separate two half spaces is considered. The coupled integral equations for the electric field distributions over the slits are developed for the case that the TM polarized plane wave is incident on the slit and solved by the method of moments. The transmitted power beyond the slit-perforated conducting parallel plates is computed in order to check the variations of the coupled power through slits against some parameters such as the incident angle of the TM polarized wave, slit width, lateral distance between two slits, and distance between the conducting plates. When the lateral distance between two slits approaches near the multiples of half wavelengths, the transmission resonance (maximum power transmission) is observed. If the slit width in the incident side is narrow and the distance between conducting plates is small compared to the wavelength, the maximum of transmitted power is observed to be nearly independent of the incident angle and slit width. In addition, the mechanism of the transmission resonance in the present geometry is explained using a simplified geometry and its equivalent circuit.

Variation of the Incident Sound Level at the Underwater Target`s Position due to Roll Motion of the Ship (선체의 횡요로 인한 수중물표입사음압의 변동에 관하여)

  • Park, Jung-Hui;Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.106-110
    • /
    • 1983
  • As the first step to investigate the effect of ship's motion when detecting target with an echo sounder, variations in the incident sound level at the optional position within the sound beam due to roll motion of the transmitter have been measured and calculated. In this experiment, the transmitter (75 KHz) was mounted to the bottom of a FRP model of the 2,275 G. T. stern trawler and the receiver (75 KHz) was installed at each measuring point within the transmitter's beam. Then, the incident sound level was measured for the roll angles from the free roll test on the model ship. For a range of roll angle of $\pm$20$^{\circ}$from the vertical, the measuring values of the incident sound level at each measuring point were rapidly fluctuated from 12.9% to 78.1 depending on the roll angle, and agreed well with the caculated ones. Consquently, we concluded that the effect of ship's motion when detecting target with an echo sounder should be sufficiently considered.

  • PDF

Research on Changes in Short Circuit Current of C-Si Solar Cell by Charge Density Waves (전하밀도파 이론으로 결정질 태양전지의 입사각에 따른 단락전류밀도 변화 연구)

  • Seo, Il Won;Koo, Je Huan;Yun, Myoung Soo;Jo, Tae Hoon;Lee, Won Young;Cho, Guang Sup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • We measure solar currents transformed from quantum efficiency as a function of incident angles of solar lights. According to conventional models for solar cells, solar currents can be induced when electrons are separated into electrons and holes in the presence of incident solar lights. On the contrary, solar currents can be possible at the time when pinned charge density waves go beyond the pinning potential barrier under the influence of incident solar beams suggested by some authors. In this experiment, measured solar currents and our theory are in good correspondence to confirm the angle dependence of solar lights.

Ballistic Protection Effectiveness Analysis of Armor Plates with Various Incident angles using Small Caliber Live Fire Test (소화기 실사격 실험 기반의 장갑 재질에 따른 입사각도별 방호성능 효과분석)

  • Lee, Gun-woo;Baek, Jang-Woon;Lee, Byoung-hwak;Kim, Jin-young;Kim, Jong-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • As a study on ballistic protection performance of a weapon system that is used in combat simulation, this paper aims to propose an improvement effect of the ballistic protection performance varying with incident angle of a bullet. For this, live-fire ballistic tests were performed to determine either complete penetration(CP) and partial penetration(PP) of three types of general armor plates made of uniformly rolled steel plates against a small caliber threat using 5.45 mm bullets with various speed. The major test parameter was the material of the weapon system and incident angle of the bullet with the target. Further, to quantitatively analyze the ballistic protection performance, three existing measurement methods were used for ballistic limit velocity. The test results showed that the ballistic protection performance with the incident angle of 30 degrees was 4% to 14% varying with the material of the armor plates greater than that of 0 degrees, which was approximately 1.1 times the performance improvement on average when compared to the conventional angle of incidence of the 0 degree. Those test results are expected to contribute to developing a more realistic combat simulation addressing the parameter improving the ballistic protection performance of an armor plate.

Influence of incident angles of earthquakes on inelastic responses of asymmetric-plan structures

  • Nguyen, Van Tu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.373-389
    • /
    • 2013
  • This paper presents the influence of incident angles of earthquakes on inelastic dynamic responses of asymmetry single story buildings under seismic ground motions. The dynamic responses such as internal forces and rotational ductility factor are used to evaluate the importance of the incident angles of ground motions in the inelastic range of structural behavior. The base shear and torque (BST) response histories of the resisting elements and of the building are used to prove that the shape of the BST surface of the building can be a practical tool to represent those of all resisting elements. This paper also shows that the different global forces which produce the maximum demands in the resisting elements tend to converge toward a single distribution in a definable intensity range, and this single distribution is related to the resistance distribution of the building.

Mechanically Fabricated Defects Detection on Underwater Steel Pipes using Ultrasonic Guided Waves (유도초음파를 이용한 수중 강관의 기계적 결함 검출)

  • Woo, Dong-Woo;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.140-145
    • /
    • 2010
  • This study presents a detection method for mechanically fabricated defects on underwater steel pipes, using ultrasonic guided waves. Three different diameters (60, 90, and 114 mm) of 1000-mm long steel pipes were considered, along with several experimental design factors such as incident angles, incident distances, and the degrees of defects, to investigate how these factors affected the experimental results - the detectability of the mechanical defects. From the experimental results, we determined that the amplitude and arrival time of the first received wave signals gave a promising clue for distinguishing the existence of the defects and their severities. Between the amplitude and arrival time, the arrival time gave a more promising indication since it was affected by the experimental factors in a constant manner. Therefore, it was shown that the use of ultrasonic guided waves for underwater pipe inspection is feasible.