DOI QR코드

DOI QR Code

소화기 실사격 실험 기반의 장갑 재질에 따른 입사각도별 방호성능 효과분석

Ballistic Protection Effectiveness Analysis of Armor Plates with Various Incident angles using Small Caliber Live Fire Test

  • 투고 : 2021.01.11
  • 심사 : 2021.02.02
  • 발행 : 2021.03.31

초록

본 논문은 전투 시뮬레이션 상에서 모의되는 무기체계의 방호성능에 대한 연구로, 입사각도에 따른 방호성능의 개선효과를 제시하고자 하였다. 이를 위해, 여러 속도로 발사된 5.45 mm 보통탄을 사용한 소화기 위협에 대하여 일반적으로 사용되는 균일압연강판 재질의 장갑판 3종의 완전 및 부분관통 여부를 판정하는 실사격 탄도실험이 수행되었다. 주요 실험 변수는 무기체계 장갑의 재질 그리고 탄자의 입사각도이었다. 또한, 방호성능에 대한 정량적인 분석을 위하여 기존 세 가지 방호한계속도 측정방법들이 사용되었다. 그 결과 탄자의 입사각이 30도인 경우 장갑의 방호성능은 0도인 경우 대비 재질별 1.04배부터 1.14배까지 향상되었으며, 방호효과가 평균적으로 약 1.1배 개선되는 것을 확인하였다. 이러한 실험결과는 장갑판의 방호성능을 증진시키는 변수에 반영되어 보다 현실에 가까운 전투 시뮬레이션을 개발하는데 기여할 것으로 기대된다.

As a study on ballistic protection performance of a weapon system that is used in combat simulation, this paper aims to propose an improvement effect of the ballistic protection performance varying with incident angle of a bullet. For this, live-fire ballistic tests were performed to determine either complete penetration(CP) and partial penetration(PP) of three types of general armor plates made of uniformly rolled steel plates against a small caliber threat using 5.45 mm bullets with various speed. The major test parameter was the material of the weapon system and incident angle of the bullet with the target. Further, to quantitatively analyze the ballistic protection performance, three existing measurement methods were used for ballistic limit velocity. The test results showed that the ballistic protection performance with the incident angle of 30 degrees was 4% to 14% varying with the material of the armor plates greater than that of 0 degrees, which was approximately 1.1 times the performance improvement on average when compared to the conventional angle of incidence of the 0 degree. Those test results are expected to contribute to developing a more realistic combat simulation addressing the parameter improving the ballistic protection performance of an armor plate.

키워드

참고문헌

  1. 국방부 "국방개혁 2.0" 대한민국 국방부(2018)
  2. 육군본부 "육군비전 2050" 대한민국 육군(2020)
  3. Cortes, C. and Vapnik, V.(1995) "Support vector machine. Machin learning, 20(3), pp. 273-297, 1995 https://doi.org/10.1007/BF00994018
  4. H. S. Choi and Hyunho Shin and Yo-Han Yoo and Park and Jang-Hyun and Jong Bong Kim(2016) "Investigation Into Protection Performance of Projectile Using Flying Plate" Journal of the Korean Society for Precision Engineering Vol. 33 No. 12, pp 1,039-1,045 https://doi.org/10.7736/KSPE.2016.33.12.1039
  5. Hun-Gyu Hwang and Bae-Sung Kim and Ji-Won Kang and Jang-Se Lee(2016) "A Method and Application of Vulnerability Analysis for Combat Systems Considering Threats and Defense Ability : Focused on PKM Model" Journal of the Korea Institute of Information and Communication Engineering Vol. 20, No 8, pp 1,623-1,631, 2016 https://doi.org/10.6109/jkiice.2016.20.8.1623
  6. Jong-Hwan Kim and Seoungwon Baik and Byengjo Yoon and Sungsik Jo(2016) "Support Vector Machine based Ballistic Limit Velocity Measurement for Small Caliber Projectile" Journal of Korea Institute of Military Science and Technology Vol. 19, No 5, pp 629-637, 2016 https://doi.org/10.9766/KIMST.2016.19.5.629
  7. USA DoD(1997) "Department of defense test method standard", USA Depart of Defense
  8. USA NIJ(2008) "Ballistic resistance of body armor", USA National Institute of Justice Office of Science and Technology
  9. Young-Jun Park and Sang-Jin Park and Yeongjin Yu and Tae-Hui Kim and Ki-Young Son(2016) "Reinforcing Method for the Protective Capacities of Dispersal and Combat Facilities using Logistic Regression" Journal of the Korea Institute of Building Construction Vol. 16, No 1, pp 77-85, 2016 https://doi.org/10.5345/JKIBC.2016.16.1.077