• Title/Summary/Keyword: InGaN-based LED

Search Result 113, Processing Time 0.027 seconds

Effect of Fabricating Nanopatterns on GaN-Based Light Emitting Diodes by a New Way of Nanosphere Lithography

  • Johra, Fatima Tuz;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Nanosphere lithography is an inexpensive, simple, high-throughput nanofabrication process. NSL can be done in different ways, such as drop coating, spin coating or by means of tilted evaporation. Nitride-based light-emitting diodes (LEDs) are applied in different places, such as liquid crystal displays and traffic signals. The characteristics of gallium nitride (GaN)-based LEDs can be enhanced by fabricating nanopatterns on the top surface of the LEDs. In this work, we created differently sized (420, 320 and 140 nm) nanopatterns on the upper surfaces of GaN-based LEDs using a modified nanosphere lithography technique. This technique is quite different from conventional NSL. The characterization of the patterned GaN-based LEDs revealed a dependence on the size of the holes in the pattern created on the LED surface. The depths of the patterns were 80 nm as confirmed by AFM. Both the photoluminescence and electroluminescence intensities of the patterned LEDs were found to increase with an increase in the size of holes in the pattern. The light output power of the 420-nm hole-patterned LED was 1.16 times higher than that of a conventional LED. Moreover, the current-voltage characteristics were improved with the fabrication of differently sized patterns over the LED surface using the proposed nanosphere lithography method.

Formation Mechanism of a Large Schottky Barrier Height for Cr-AlGaN/GaN Heterostructure (Cr/n-AlGaN/GaN Schottky Contact에서 높은 쇼트키 장벽 형성 메카니즘에 관한 연구)

  • Nam, Hyo-Duk;Lee, Yeung-Min;Jang, Ja-Soon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.266-270
    • /
    • 2011
  • We report on the formation mechanism of large Schottky barrier height (SBH) of nonalloyed Cr Schottky contacts on strained Al0.25Ga0.75N/GaN. Based on the current-voltage (I-V) and capacitance-voltage (C-V) data, the SBHs are determined to be 1.98 (${\pm}0.02$) and 2.07 (${\pm}0.02$) eV from the thermionic field emission and two-dimensional electron gas (2DEG) calculations, respectively. Possible formation mechanism of large SBH will be described in terms of the formation of Cr-O chemical bonding at the interface between Cr and AlGaN/GaN, low binding-energy shift to surface Fermi level, and the reduction of 2DEG electrons.

The Effect of Current Flow on Active Layer by n-GaN Electrode Patterns in GaN-based Vertical Light-Emitting Diodes (수직형 구조 GaN 발광다이오드의 n-GaN 위 전극구조에 따른 활성층 영역에서의 전류분포 전산모사)

  • Lee, Byoung-Gyu;Shin, Young-Chul;Kim, Eun-Hong;Kim, Chul-Min;Lee, Wan-Ho;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.326-326
    • /
    • 2008
  • 갈륨 질화물 (GaN) 기반의 발광다이오드(Light Emitting Diode, LED)는 최근 디스플레이, 교동신호등, 휴대폰용 키패드의 광원 등에 널리 사용되는 전자소자로, 차세대 조명용 광원으로도 각광받고 있다. 일반적인 수평 구조의 LED에 비해 수직형 구조 LED 는 발광면이 n-GaN 표면 전체이며, 전류 확산 특성이 매우 뛰어남으로 인해 차세대 구조라고 표현되어 진다. 이런 구조에서 활성층 영역에서의 균일한 전류 분포는 전류밀집 현상을 억제하여 결과적으로 광학적 특성을 향상시킨다. 따라서 현재까지도 전류확산에 따른 발광다이오드의 성능향상에 대한 연구가 다각도로 이루어지고 있다. 본 연구에서는 수직형 GaN LED 의 전극 패턴에 따른 활성층 영역에서의 전류밀도 분포에 대해 조사하였다. 전극 패턴의 크기 및 구조 변화에 따른 활성층 영역에서의 전류분포도를 삼차원 회로 모델을 이용하여 분석하였다. 또한 활성층 영역으로 주입되는 전류 밀도의 크기가 내부양자효율에 미치는 영향에 대하여 알아보았다. 활성층 영역에서의 균일한 전류밀도 분포를 갖는 전극구조를 설계하였으며, 각각의 전극구조를 적용한 수직형 GaN LED의 전기/광학적 특성에 대해 전산모사 하였다. 최종적으로, n-GaN 위 전극의 크기 및 구조 변화에 대한 시뮬레이션 결과를 토대로, 균일한 전류분포 및 내부 양자효율 향상을 위한 전극패턴 설계 방침을 제안한다.

  • PDF

Novel Activation by Electrochemical Potentiostatic Method

  • Lee, Hak-Hyeong;Lee, Jun-Gi;Jeong, Dong-Ryeol;Gwon, Gwang-U;Kim, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

Excitation Light Source Dependence of Photo-catalytic Efficiency for Benzene Removal (벤젠제거에 대한 광촉매 효율의 여기광원 의존성)

  • Choi, Yong-Seok;Kim, Seong-Jin;Han, Young-Heon;Yu, Soon-Jae;Lee, Eun-Ah;Kim, Hak-Soo;Kim, Song-Gang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.510-514
    • /
    • 2005
  • We have investigated the excitation-light source dependence of photo-catalytic efficiency for the benzene removal. The photo-catalytic module for the benzene removal is fabricated by a combination of GaN-based ultraviolet light-emitting diode (UV GaN-LED) and $TiO_2$ thin film coated on an aluminum plate. The benzene reduction rates of 365 nm and 375 nm modules at 60 mA junction current are approximately $8.95\;\%/Hr$ and $9.2\;\%/Hr$, respectively, which indicates that 365 nm GaN-LED is more effective than 375 nm GaN-LED. The benzene reduction efficiency is also noticeably dependent on the excitation wavelength and excitation-light power, as well as it is increased with the shorter wavelength and higher excitation power. This result exhibits that UV GaN-LED is useful to remove the volatile organic compounds (VOCs) existing in the environment.

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.443-446
    • /
    • 2009
  • This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF

Enhanced light extraction in GaN-bassed LED with embo type Al reflector (엠보형 Al 반사막을 이용한 GaN-based LED의 광추출 효율 향상)

  • Lee, Wan-Ho;Shin, Young-Chul;Kim, Eun-Hong;Kim, Chul-Min;Lee, Byoung-Gyu;Zhong, Yuan;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.150-150
    • /
    • 2008
  • 고효율 LED를 얻기 위해서는 LED의 내부 양자효율과 외부 양자효율이 높아야 한다. 현재 GaN-Based LED의 내부 양자효율은 결정의 질의 개선 및 이중이종접합 또는 다중양자우물 구조와 같이 활성층의 캐리어 농도를 높이는 접합구조로 설계되어 거의 100%에 가까워졌다. 그러나 외부 양자효율은 반도체 재료의 높은 굴절률로 인하여 외부로 탈출하지 못하고 내부로 전반사 되어 반도체 내부에 갇히게 되는데 이처럼 갇힌 빛은 반도체와 중간 Interface에 TIR(total internal reflection) 또는 반사판에 의해 계속적으로 반사 된다. 그러므로 이를 해결하기 위한 플립칩 구조, 포토닉 크리스탈 등의 여러 가지 방법들이 제시되고 있지만 아직도 더 높은 외부 양자 효율의 개선을 요구하고 있다. 본 연구에서는 새로운 형태의 반사판(Al) 즉 p-GaN과 반사판 사이의 interlayer로 반사판과의 오믹 접촉을 고려한 Embo type의 NiO를 구현하여 반사된 빛의 방향을 내부반사를 줄일 수 있는 방향으로 변화시킴으로써 광 추출 효율의 향상을 기대할 수 있게 되었다.

  • PDF

Ohmic contacts to p-type GaN for high brightness LED applications

  • Seong, Tae-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.23-23
    • /
    • 2003
  • GaN-related semiconductors are of great technological importance for the fabrication of optoelectronic devices, such as blue and ultra violet light emitting diodes (LEDs), laser diodes, and photo-detectors. One of the most important applications of GaN-based LEDs is solid-state lighting, which could replace incandescent bulbs and ultimately fluorescent lamps. For solid-state lighting applications, the achievement of high extraction efficiency in LED structures is essential. For flip-chip LEDs (FCLEDS), the formation of low resistance and high reflective p-GaN contact is crucial. So far, a wide variety of different methods have been employed to improve the ohmic properties of p-type contacts to GaN. For example, surface treatments using different chemical solutions have been successfully used to produce high-quality ohmic contacts, Metallization schemes, such as Ta/Ti contacts to p-GaN, were also investigated. For these contacts, the removal of hydrogen atoms from the Mg atoms doped n the GaN was argued to be responsible for low contact resistances.

  • PDF

Monolithic Polychromatic InGaN Light-Emitting Diodes Based on Micro-facet Structures

  • Funato, Mitsuru;Kawakami, Yoichi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1149-1152
    • /
    • 2008
  • Nitride semiconductor based light-emitting diodes attain a new functionality of polychromatic emission by the use of three-dimensionally faceted microstructures, which may lead to an advanced lighting technology in which the light source spectra are synthesized so as to meet requirements of the application.

  • PDF