• Title/Summary/Keyword: InGaN/GaN

Search Result 1,812, Processing Time 0.038 seconds

화학적 기상 에칭법을 이용한 고품질 질화물 반도체 나노구조 형성 연구

  • Kim, Je-Hyeong;Go, Yeong-Ho;Gong, Su-Hyeon;Go, Seok-Min;O, Chung-Seok;Park, Gi-Yeon;Jeong, Myeong-Ho;Lee, Jeong-Yong;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.182-182
    • /
    • 2012
  • 반도체 저차원 구조에서의 독특한 광학적, 전기적 특성이 연구됨에 따라 양자점, 양자선, 양자우물과 같은 공간적으로 구속되어 있는 나노구조 형성에 관한 제작 방법과 그 특성 연구가 많은 관심을 받고 있다. 하지만 Si 또는 GaAs 반도체와 달리 광소자로써 각광받고 있는 질화물 반도체의 경우, 높은 화학적, 물리적 안정성으로 인해, 화학적 에칭에 의한 나노구조 형성이 쉽지 않고, 물리적 에칭의 경우, 표면 결함이 많이 발생되는 문제점이 있어 어려움을 겪고 있다. 최근 본 연구그룹에서는 자체 개발한 고온 HCl 가스를 이용한 화학적 기상 에칭법을 이용하여, 다양한 크기, 모양의 나노구조 형성 및 이를 이용한 다양한 타입의 InGaN 나노구조 제작 및 특성에 대해 연구하였다 (Figure 1). 화학적 기상 에칭법을 이용한 나노구조의 경우, 선택적인 결함구조 제거 및 이종기판 사용에 따른 응력 감소, 광추출 효율을 증가시켜, 우수한 구조적, 광학적 특성을 보여주었고, 에칭 조건에 따른, 피라미드, 막대와 같은 다양한 나노구조를 제작하였다. 뿐만 아니라 이를 기반으로 한 다양한 InGaN 나노구조를 모델을 제시하였는데, 첫번째는 GaN 나노막대 기판 위에 형성된 고품위InGaN 양자우물구조 성장이고, 두 번째는 InGaN 양자우물을 포함하고 있는 나노막대 구조 제작, 세번째는 InGaN/GaN core/shell 구조이다 (Figure 2). 이러한 InGaN 나노구조의 경우 높은 광결정성 및 크게 감소한 내부 전기장 효과, 광방출에 유리한 구조에 기인한 우수한 광특성을 보여주고 있어 광소자로써 응용가능성이 크고, InGaN/GaN core/shell 나노구조의 경우, 나노구조 내부에 단일 InGaN양자점이 형성되어 높은 광추출효율의 양자광소자로써 활용가능성을 보여주었다.

  • PDF

Theoretical Model and Parasitic Parameters Extraction of Leakage Current in InGaN/GaN Light Emitting Diodes (InGaN/GaN 발광다이오드의 누설전류의 이론적 모델과 기생 파라미터 추출)

  • Hwang, Seong-Min;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.289-290
    • /
    • 2007
  • We have theoretically derived a electrical model and extracted a parasitic parameters of leakage current in InGaN/GaN light emitting diodes (LEDs). The parasitic parameters of our LED are $R_p=10^{10}{\Omega}$, $I_{0,2}=10^{-17}A$ and $n_2=3.6$, which provide information of leakage current.

  • PDF

Reduction of Operating Voltage of GaN-based Blue-violet Laser Diode by using Highly Mg Doped GaN Layer (고농도의 Mg가 도핑된 GaN층을 이용한 GaN계 청자색 레이저다이오드의 동작 전압 감소)

  • 곽준섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.764-769
    • /
    • 2004
  • In order to reduce operating voltage of the GaN based blue-violet laser diodes, the effect of highly Mg doped GaN layer, which was grown below ohmic contact metals, on contact resistivity as well as operating voltage has been investigated. The addition of the highly Mg doped GaN layer greatly reduced contact resistivity of Pd/Pt/Au ohmic contacts from $5.2 \times {10}^-2 \Omegaㆍ$\textrm{cm}^2$ to 7.5 \times {10}^-4 \Omegaㆍ$\textrm{cm}^2$$. In addition, it also decreased device voltage at 20 mA by more than 3 V. Temperature- dependent sheet resistivity of the highly Mg doped GaN layer suggested that the reduction of the contact resistivity could be attributed to predominant current flow at the interface between the Pd/Pt/Au contacts and p-GaN through a deep level defect band, rather than the valence band.

Charaterization of GaN Films Grown on Si(100) by RF Magnetron Sputtering (RF magnetron sputtering 방법에 의해 Si(100) 기판 위에 성장된 GaN 박막의 특성에 대한 연구)

  • 이용일;성웅제;박천일;최우범;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.570-573
    • /
    • 2001
  • In this paper, GaN films have been grown on SiO$_2$/Si(100) substrates by RF magnetron sputtering. To obtain high quality GaN films, we used ZnO buffer layer and modified the process conditions. The charateristics of GaN films on RF power, substrate temperature and Ar/N$_2$gas ratio have been investigated by Auger electron spectroscopy and X-ray diffraction analysis. At RF power 150W, substrate temperature 500 $^{\circ}C$ and Ar/N$_2$=1:2 gas ratio, we could grow high quality GaN films. Through the atomic force microscope and photoluminescence analysises, it was observed that the crystallization of GaN films was improved with increasing annealing temperature and the optimal crystallization of GaN films was found at 1100 $^{\circ}C$ annealing temperature.

  • PDF

Distance between source and substrate and growth mode control in GaN nanowires synthesis (Source와 기판 거리에 따른 GaN nanowires의 합성 mode 변화 제어)

  • Shin, T.I.;Lee, H.J.;Kang, S.M.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • We synthesized GaN nanowires with high quality using the vapor phase epitaxy technique. The GaN nanowires were obtained at a temperature of $950^{\circ}C$. The Ar and $NH_3$ flow rates were 1000 sccm and 50 sccm, respectively. The shape of the GaN nanowires was confirmed through FESEM analysis. We were able to conclude that the GaN nanowires synthesized via vapor-solid (VLS) mechanism when the source was closed to the substrate. On the other side, the VS mechanism changed to vapor-liquid-solid (VLS) as the source and the substrate became more distant. Therefore, we can suggest that the large amount of Ga source from initial growth interrupt the role of catalyst on the substrate.

Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion (InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석)

  • Im, Ik-Tae;Youn, Suk-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

Growth and Characteristic of GaN using In-situ SiN Mask by MOCVD (In-situ SiN Mask를 이용한 GaN 성장 및 특성 연구)

  • Kim, Deok-Kyu;Jeong, Jong-Yub;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.97-100
    • /
    • 2004
  • We have grown GaN layers with in-situ SiN mask by metal organic chemical vapor deposition (MOCVD) and study the characteristic of the GaN layer. We have changed the deposition time of SiN mask from 45s to 5min and obtain th optimum condition in 45s. The PL intensity of GaN with SiN mask improved 2 times to that without SiN mask and the carrier concentraion increased from $3.5{\times}10^{16}cm^{-3}$ to $1.8{\times}10^{17}cm^{-3}$. We have thus shown that the SiN mask improved significantly the optical properties of the GaN layer.

  • PDF

Formation of GaN microstructures using metal catalysts on the vertex of GaN pyramids (금속촉매를 이용한 GaN 피라미드 꼭지점 위의 마이크로 GaN 구조 형성)

  • Yun, W.I.;Jo, D.W.;Ok, J.E.;Jeon, H.S.;Lee, G.S.;Jung, S.K.;Bae, S.M.;Ahn, H.S.;Yang, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.110-113
    • /
    • 2011
  • In this paper, we propose a new method for the fabrication of GaN microstructures formed only on the vertex of GaN pyramid by using of metal catalysts. GaN pyramidal structures were selectively grown on 3 ${\mu}m$ $SiO_2$ dot patterns followed by thin film deposition of Au and Cr only on the vertex area of the GaN pyramids with precisely controlled photolithography. After the metal deposition, the samples were loaded in the MOVPE reactor for the growth of GaN microstructures for 10 minutes. Temperature for the growth of the GaN microstructures was changed from $650^{\circ}C$ to $750^{\circ}C$. Rod type GaN microstructures were grown in the direction of vertical to the six {1-101} facets and the shape of the GaN microstructures was changed depend on the type of metal.

Properties of Beta-Ga2O3 Film from the Furnace Oxidation of Freestanding GaN (FS-GaN을 열산화하여 제작된 Beta-Ga2O3 박막의 특성)

  • Son, Hoki;Lee, YoungJin;Lee, Mijai;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.427-431
    • /
    • 2017
  • In this paper, we discuss ${\beta}-Ga_2O_3$ thin films that have been grown on freestanding GaN (FS-GaN) using furnace oxidation. A GaN template was grown by horizontalhydride vapor phase epitaxy (HVPE), and FS-GaN was fabricated using the laser lift off (LLO) system. To obtain ${\beta}-Ga_2O_3$ thin film, FS-GaN was oxidized at $900{\sim}1,100^{\circ}C$. Surface and cross-section of prepared ${\beta}-Ga_2O_3$ thin films were observed by field emission scanning electron microscopy (FE-SEM). The single crystal FS-GaNs were changed to poly-crystal ${\beta}-Ga_2O_3$. The oxidized ${\beta}-Ga_2O_3$ thin film at $1,100^{\circ}C$ was peel off from FS-GaN. Next, oxidation of FS-GaNwas investigated for 0.5~12 hours with variation of the oxidation time. The thicknesses of ${\beta}-Ga_2O_3$ thin films were measured from 100 nm to 1,200 nm. Moreover, the 2-theta XRD result indicated that (-201), (-402), and (-603) peaks were confirmed. The intensity of peaks was increased with increased oxidation time. The ${\beta}-Ga_2O_3$ thin film was generated to oxidize FS-GaN.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.