• Title/Summary/Keyword: InAs quantum dots

Search Result 276, Processing Time 0.02 seconds

Photoluminescence Characteristics of InAs Quantum Dots Grown on AlAs Epitaxial Layer (AlAs 에피층 위에 성장된 InAs 양자점의 Photoluminescence 특성연구)

  • Kim, Ki-Hong;Sim, Jun-Hyoung;Bae, In-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.356-361
    • /
    • 2009
  • The optical characterization of self-assembled InAs/AlAs Quantum Dots(QD) grown by MBE(Molecular Beam Epitaxy) was investigated by using Photoluminescence(PL) spectroscopy. The influence of thin AlAs barrier on QDs were carried out by utilizing a pumping beam that has lower energy than that of the AlAs barrier. This provides the evidence for the tunneling of carriers from the GaAs layer, which results in a strong QD intensity compared to the GaAs at the 16 K PL spectrum. The presence of two QDs signals were found to be associated with the ground-states transitions from QDs with a bimodal size distribution made by the excitation power-dependent PL. From the temperature-dependent PL, the rapid red shift of the peak emission that was related to the QD2 from the increasing temperature was attributed to the coherence between the QDs of bimodal size distribution. A red shift of the PL peak of QDs emission and the reduction of the FWHM(Full Width at Half Maximum) were observed when the annealing temperatures ranged from 500 $^{\circ}C$ to 750 $^{\circ}C$, which indicates that the interdiffusion between the dots and the capping layer was caused by an improvement in the uniformity size of the QDs.

Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD

  • Lee, Yun-Ji;Cha, Ji-Min;Yoon, Chang-Bun;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • In this study, quantum dots composed of $Mn^{2+}$ doped ZnS core and ZnS shell were synthesized using MPA precursor at room temperature. The ZnS: Mn/ZnS quantum dots were prepared by varying the content of MPA in the synthesis of ZnS shells. XRD, Photo-Luminescence (PL), XPS and TEM were used to characterize the properties of the ZnS: Mn/ZnS quantum dots. As a result of PL measurement using UV excitation light at 365 nm, the PL intensity was found to greatly increase when MPA was added at 15 ml, compared to the case with no MPA; the PL peaks shifted from 603 nm to 598 nm. A UV sensor was fabricated by using a sputtering process to form a Pt pattern and placing a QD on the Pt pattern. To verify the characteristics of the sensor, we measured the electrical properties via irradiation with UV, Red, Green, and Blue light. As a result, there were no reactions for the R, G, and B light, but an energy of 3.39 eV was produced with UV light irradiation. For the sensor using ZnS: Mn/ZnS quantum dots, the maximum current (A) value decreased from $4.00{\times}10^{-11}$ A to $2.62{\times}10^{-12}$ A with increasing of the MPA content. As the MPA content increases, the PL intensity improves but the electrical current value dropped because of the electron confinement effect of the core-shell.

CdTe Quantum Dots as Fluorescent Probes for Josamycin Determination

  • Peng, Jinyun;Nong, Keliang;Mu, Guangshan;Huang, Fengying
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2727-2731
    • /
    • 2011
  • A new method for the determination of josamycin has been developed based on quenching of the fluorescence of 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by josamycin in ethanol. Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with josamycin were investigated. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of josamycin between 12.0 and 120.0 ${\mu}g\;mL^{-1}$ with a correlation coefficient of 0.9956 and a detection limit of 2.5 ${\mu}g\;mL^{-1}$. The proposed method was successfully applied to commercial tablets, and the results were satisfactory, i.e. consistent with those of high-performance liquid chromatography (HPLC).

Homogeneous characteristics of CdSe quantum dots from absorption coefficient and its change (흡수 계수와 흡수 계수 변화 특성에 따른 CdSe 양자 구슬 구조의 균일성 조사)

  • Hwang, Young-Nam;Shin, Sang-Hoon;Park, Seung-han;Kim, Ung;Kim, Dong-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.122-127
    • /
    • 1997
  • The hexagonal wurtzite structure of CdSe quantum dots are investigated by X-ray diffraction experiment. The absorption peaks due to quantum confinement effect are observed in the linear absorption spectra. Absorption coefficient changes at the lowest transition are measured with pump wavelength at the lowest transition and at the next higher transition from which direct intraband transition is not allowed. The measured larger absorption changes at the lowest transition confirm that the selection rules of intraband transition resulting from quantum confinement effect are satisfied. From the experimental results, therefore, we concluded that the CdSe quantum dots can be described as homogeneous system.

  • PDF

Luminescence Properties of InAlAs/AlGaAs Quantum Dots Grown by Modified Molecular Beam Epitaxy

  • Kwon, Se Ra;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.387-391
    • /
    • 2014
  • Self-assembled InAlAs/AlGaAs quantum dots (QDs) on GaAs substrates were grown by using modified molecular epitaxy beam in Stranski-Krastanov method. In order to study the structural and optical properties of InAlAs/AlGaAs QDs, atomic force microscopy (AFM) and photoluminescence (PL) measurements are conducted. The size and uniformity of QDs have been observed from the AFM images. The average widths and heights of QDs are increased as the deposition time increases. The PL spectra of QDs are composed of two peaks. The PL spectra of QDs were analyzed by the excitation laser power- and temperature-dependent PL, in which two PL peaks are attributed to two predominant sizes of QDs.

Electrical and Magnetic Properties of Tunneling Device with FePt Magnetic Quantum Dots (FePt 자기 양자점 터널링 소자의 전기적 특성과 자기적 특성 연구)

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • We have studied the electrical and magnetic transport properties of tunneling device with FePt magnetic quantum dots. The FePt nanoparticles with a diameter of 8~15 nm were embedded in a $SiO_2$ layer through thermal annealing process at temperature of $800^{\circ}C$ in $N_2$ gas ambient. The electrical properties of the tunneling device were characterized by current-voltage (I-V) measurements under the perpendicular magnetic fields at various temperatures. The nonlinear I-V curves appeared at 20 K, and then it was explained as a conductance blockade by the electron hopping model and tunneling effect through the quantum dots. It was measured also that the negative magneto-resistance ratio increased about 26.2% as increasing external magnetic field up to 9,000 G without regard for an applied electric voltage.

Fabrication of Visible-Light Sensitized ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots

  • Kim, Misung;Bang, Jiwon
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.510-514
    • /
    • 2018
  • Colloidal semiconductor quantum dots (QDs), because of the novel optical and electrical properties that stem from their three-dimensional confinement, have attracted great interest for their potential applications in such fields as bio-imaging, display, and opto-electronics. However, many semiconductors that can be exploited for QD applications contain toxic elements. Herein, we synthesized non-toxic ZnTe/ZnSe (core/shell) type-II QDs by pyrolysis method. Because of the unique type-II character of these QDs, their emission can range over an extended wavelength regime, showing photoluminescence (PL) from 450 nm to 580 nm. By optimizing the ZnSe shell growth condition, resulting ZnTe/ZnSe type-II QDs shows PL quantum yield up to ~ 25% with 35 nm PL bandwidth. Using a simple two step cation exchange reaction, we also fabricated ZnTe/ZnSe type-II QDs with absorption extended over the whole visible region. The visible-light sensitized heavy metal free ZnTe/ZnSe type-II QDs can be relevant for opto-electronic applications such as displays, light emitting diodes, and bio-imaging probes.

Optical properties of InAs quantum dots with different size (InAs 양자점의 크기에 따른 분광학적 특성)

  • 권영수;임재영;이철로;노삼규;유연희;최정우;김성만;이욱현;류동현
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.450-455
    • /
    • 1999
  • We present Photoluminescence (PL) and Atomic Force Microscopy (AFM) image on InAs quantum dots (QDs) having different size which grown by Molecualr Beam Epitaxy (MBE). For different size QDs, analysis of the AFM profiles show that the density of QDs was the maximum value $(1.1\times10^{11}\textrm{/cm}^2)$ at 2.0 ML. In the spectra of QDs, it is found that the peak energy decreases with increasing dot size due to the effect of quantum confinement. Temperature dependence of PL intensities show that the PL is quenching and Red shift as the temperature increase. The FWHM range of 20K~180K is narrowing with increasing temperature. When temperature is over 180K, the line-width starts to in creases with increasing temperature. At last, temperature dependence of the integrated intensities were fit using the Arrehenius-type function for the activation energy. Fit value of the activation energy was increased with increasing QDs-size.

  • PDF

Enhancing Performance of 1-aminopyrene Light-Emitting Diodes via Hybridization with ZnO Quantum Dots

  • Choi, Jong Hyun;Kim, Hong Hee;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.238-243
    • /
    • 2022
  • In this study, a pyrene-core single molecule with amino (-NH2) functional group material was hybridized using ZnO quantum dots (QDs). The suppressed performance of the 1-aminopyrene (1-PyNH2) single molecule as an emissive layer (EML) in light-emitting diodes (LEDs) was exploited by adopting the ZnO@1-PyNH2 core-shell structure. Unlike pristine 1-PyNH2 molecules, the ZnO@1-PyNH2 hybrid QDs formed energy proximity levels that enabled charge transfer. This result can be interpreted as an improvement in surface roughness. The uniform and homogeneous EML alleviates dark-spot degradation. Moreover, LEDs with the ITO/PEDOT:PSS/TFB/EML/TPBi/LiF/Al configuration were fabricated to evaluate the performance of two emissive materials, where pristine-1-PyNH2 molecules and ZnO@1-PyNH2 QDs were used as the EML materials to verify the improvement in electrical characteristics. The ZnO@1-PyNH2 LEDs exhibited blue luminescence at 443 nm (FWHM = 49 nm), with a turn-on voltage of 4 V, maximum luminance of 1500 cd/m2, maximum luminous efficiency of 0.66 cd/A, and power efficiency of 0.41 lm/W.

NMR analysis of organic ligands on quantum-dots

  • Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.51-55
    • /
    • 2019
  • Quantum dot (QD) is an emerging novel nanomaterial that has wide applicability and superior functionality with relatively low cost. Nuclear magnetic resonance (NMR) spectroscopy has been contributed to elucidate various features of QDs and to improve their overall performance. In particular, NMR spectroscopy becomes an essential analytical tool to monitor and analyze organic ligands on the QD surface. In the present mini-review, application of NMR spectroscopy as a superb methodology to appreciate organic ligands is discussed. In addition, it was recently noted that ligands exert rather greater influence on diverse features of QDs than our initial anticipation, for which contribution of NMR spectroscopy is briefly reviewed.