• Title/Summary/Keyword: InAs 양자점

Search Result 407, Processing Time 0.023 seconds

Improved charge balance in quantum dot light-emitting diodes using self-assembled monolayer (자기조립단분자막을 이용한 양자점 발광다이오드의 전하 균형도 개선)

  • Sangwook Park;Woon Ho Jung;Yeyun Bae;Jaehoon Lim;Jeongkyun Roh
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2023
  • To improve the efficiency and stability of colloidal quantum dot light-emitting diodes (QD-LEDs), it is essential to achieve charge balance within the QD emissive layer. Zinc oxide (ZnO) is widely used for constructing an electron transport layer in the state-of-the-art QD-LEDs, but spontaneous electron injection from ZnO often results in excessive electrons in QDs that significantly deteriorate the performance of QD-LEDs. In this study, we demonstrated the improved performance of QD-LEDs by modifying the electron injection property of ZnO with self-assembled monolayer (SAM)-treatment. As a result of improved charge balance, the external quantum efficiency and maximum luminance of QD-LEDs with SAM-treatment were improved by 25% and 200%, respectively, compared to the devices without SAM-treatment.

Design Of Minimized Wiring XOR gate based QCA Half Adder (배선을 최소화한 XOR 게이트 기반의 QCA 반가산기 설계)

  • Nam, Ji-hyun;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.895-903
    • /
    • 2017
  • Quantum Cellular Automata(QCA) is one of the proposed techniques as an alternative solution to the fundamental limitations of CMOS. QCA has recently been extensively studied along with experimental results, and is attracting attention as a nano-scale size and low power consumption. Although the XOR gates proposed in the previous paper can be designed using the minimum area and the number of cells, there is a disadvantage that the number of added cells is increased due to the stability and the accuracy of the result. In this paper, we propose a gate that supplement for the drawbacks of existing XOR gates. The XOR gate of this paper reduces the number of cells by arranging AND gate and OR gate with square structure and propose a half-adder by adding two cells that serve as simple inverters using the proposed XOR gate. Also This paper use QCADesginer for input and result accuracy. Therefore, the proposed half-adder is composed of fewer cells and total area compared to the conventional half-adder, which is effective when used in a large circuit or when a half - adder is needed in a small area.

Survey on Hash-Based Post-Quantum Digital Signature Schemes (해시 기반 양자내성 전자서명 기법 연구 동향)

  • Lee, Jae-Heung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.683-688
    • /
    • 2021
  • Digital signature algorithms such as RSA and ECDSA are threatened by the development of quantum computer technology, which is attracting attention as a future technology. Alternatively, various post-quantum algorithms such as grid-based, multivariate-based, code-based, and hash-based are being studied. Among them, the hash-based is a fast and quantitative security level that can be calculated and its safety has been proven. So it is receiving a lot of attention. In this paper, we examine various hash-based digital signature algorithms that have been proposed so far, and analyze their features and their strengths and weaknesses. In addition, we emphasize the importance of reducing the size of the signature in order for the hash-based signature algorithm to be practically used.

Function Embedding and Projective Measurement of Quantum Gate by Probability Amplitude Switch (확률진폭 스위치에 의한 양자게이트의 함수 임베딩과 투사측정)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1027-1034
    • /
    • 2017
  • In this paper, we propose a new function embedding method that can measure mathematical projections of probability amplitude, probability, average expectation and matrix elements of stationary-state unit matrix at all control operation points of quantum gates. The function embedding method in this paper is to embed orthogonal normalization condition of probability amplitude for each control operating point into a binary scalar operator by using Dirac symbol and Kronecker delta symbol. Such a function embedding method is a very effective means of controlling the arithmetic power function of a unitary gate in a unitary transformation which expresses a quantum gate function as a tensor product of a single quantum. We present the results of evolutionary operation and projective measurement when we apply the proposed function embedding method to the ternary 2-qutrit cNOT gate and compare it with the existing methods.

Improvement of Short-Circuit Current of Quantum Dot Sensitive Solar Cell Through Various Size of Quantum Dots (양자점 입도제어를 통한 양자점 감응형 태양전지 단락전류 향상)

  • Ji, Seung Hwan;Yun, Hye Won;Lee, Jin Ho;Kim, Bum-Sung;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/㎠ and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/㎠ and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.

The Effects of FTA Diversification on Bilateral Trade in the Spatial Model (공간모형을 통한 FTA의 다각화가 양자무역에 미치는 영향 분석)

  • Lee, Soon-Cheul
    • International Area Studies Review
    • /
    • v.20 no.1
    • /
    • pp.53-78
    • /
    • 2016
  • This study is to analyze the effects of both the bilateral FTA and a home and its trade partner's FTAs on the trade with 62 country-pair panel data over the period of 2003-2013 using the gravity model and the spatial autoregressive model. First, the study analyzes how the bilateral FTAs affect the trade using the gravity model and the spatial model. Next, the article analyzes how the home and its trade partners' FTAs affect their trade using only the spatial model under controlling the bilateral FTA. The empirical results are summarized as the followings: first, the spatial mode fits well more than the gravity model in analyzing the relationship between the bilateral FTA and trade. It implies that the spatial spillover effect of FTA is important in the international trade with FTA. Second, the bilateral FTA plays a role in expanding the trade between or among the FTA members as proved by the previous studies. Third, the more the home and its trade partners' FTAs, the more the bilateral trade are extended. Fourth, with the bilateral FTAs, as the home and its trade partners enter into more FTAs, the bilateral trade reduces due to trade diversion effects. In conclusion, this study provides a political implication that in order to increase the trade volume, a country enters into as many FTAs as possible because the effects of the bilateral FTAs would decrease.