• Title/Summary/Keyword: In-wheel Motor

Search Result 326, Processing Time 0.027 seconds

Disturbance Observer Based Anti-slip Re-adhesion Control for Electric Motor Coach

  • Miyashita, Ichiro;Kadowaki, Satoshi;Ohishi, Kiyoshi;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a new anti-slip re-adhesion control system fur electric railway vehicle driven by inverter-fed induction motors. This paper introduces an instantaneous tangential farce coefficient estimator between driving wheel and rail, which is based on disturbance observer. The torque command of proposed system regulates to exceed this estimated tangential farce coefficient in order to avoid undesirable slip phenomenon of driving wheels. We have already proposed the anti-slip re-adhesion control system based on disturbance observer for simplified one wheel equivalent model successfully. This paper extend to this system to the actual bogie system, which has four driving wheels driven by two induction motors fed by one inverter. In order to apply anti-slip re-adhesion control to the actual bogie system a new anti-slip re-adhesion control based on both disturbance observer and speed sensor-less vector control of induction motor with quick response are combined. The experimental results and the numerical simulation results prove the validity of the proposed control system.

  • PDF

Effects of Vehicle Electric Components on the Steering Input Torque (차량 전장 부품 특성이 MDPS 조타 토크에 미치는 영향)

  • Cho, Hyunseok;Lee, Byungrim;Chang, Sehyun;Park, Youngdae;Kim, Minjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.113-119
    • /
    • 2014
  • For the robust design of Motor Driven Power Steering (MDPS) systems, it is important to consider energy efficiency from every aspect such as system configuration and current flow, etc. If design optimization is not considered, it has many problems on a vehicle. For example, when evaluating steering test, particularly the Catch-up test which turning the steering wheel left or right quickly, steering effort should be increased rapidly. Also a vehicle might have poor fuel efficiency. In this study, it is calculated energy consumption for each component of the steering system and analyzed factors of energy consumption. As a result, this paper redefines a method to estimate steering input torque using characteristics of vehicle electric components and then conducts an analysis of contribution for the Catch-up.

CTBA Geometry Compensation System (CTBA 지오메트리 보상 시스템 개발)

  • Moon, Ha-Kyung;Lee, Byung-Rim;Kim, Hyo-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.113-119
    • /
    • 2012
  • CTBA(Coupled Torsion Beam Axle) has been adapted as the rear suspension of a compact car. Because that has the advantage of cost and weight in comparison with multi-link type. But CTBA has the disadvantage in vehicle stability to become oversteer occurring toe-out of the rear wheel when cornering and braking. In this study, we suggested CTBA Geometry Compensation System to overcome the disadvantage of CTBA. We predicted braking and cornering vehicle performance from proposed equation and numerical simulation. And also, the results were compared to objective and subjective evaluation in vehicle.

Field Oriented Control in Parallel Operation System of Induction Motors (유도전동기(誘導電動機)의 병렬운전(竝列運轉) System에서의 벡터제어(制御))

  • Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.149-155
    • /
    • 1998
  • This paper describes a reference flux angle selection for a vector control in the parallel operation system that consists of a inverter and several induction motors. In particular, this paper suggests which flux angle of motors prefers for the vector control in the train drive system that diameters of wheels are different. Through simulation for a 210[kW] induction motor drive system, it is clear that the vector control by using of the flux angle of a motor having a minimum wheel diameter leads to a minimum torque difference. However, it requires too many current sensors. So, it is shown that the vector control by a average flux angle of motors is preferable.

  • PDF

Development of a hybrid wheelchairs by using AFPM motor (AFPM 전동기를 이용한 수/전동 휠체어 개발)

  • Kim Hyoung-Gil;Kong Jeong-Sik;Seo Young-Taek;Oh Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.908-910
    • /
    • 2004
  • Disabled people have benefited greatly from the developments in technology over the last twenty years. Systems have been developed and refined to help them overcome, or cope with, difficulties they experience as a result of their disabilities. As technology has become cheaper, more powerful and easier to use, disabled people have taken to using them to an ever increasing degree. In this paper, we propose novel hybrid mobility devices which use a combination of human power and electric power. This paper deals with the design of a direct-drive wheel Axial-flux permanent magnet motor. This type motor prove to be the best candidate for application in electric vehicles, as in comparison with conventional motors they allow design with higher compactness, lightness. A prototype vehicle for an application as a hybrid wheelchair is designed, built, and tested.

  • PDF

Tribological Failure Examples Involving Hydraulic Unit, Sensor, Computer of Anti-lock Brake System in Passenger Cars (승용차 ABS의 하이드로릭 유닛, 센서, 컴퓨터에 관련된 트라이볼로지적인 고장사례 고찰)

  • Lee, IlKwon;Han, JaeOh;Lee, JongHo;Lee, YoungSuk;Kim, ChooHa
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.183-188
    • /
    • 2014
  • In this paper, we present our analysis of tribological failure examples for an anti-lock brake system(ABS) in a car. The study range of this paper is to improve the quality of ABS system by analyzing with sensor, computer, actuator and oil lines. In the first example, the brake leak from hydraulic supply line in a caliper on the rear left side of the ABS hydraulic modulator. This produces the sponge phenomenon, where the car does not brake even when the driver operates the brake pedal. The hydraulic unit operating ABS is actuator that play role regulating drive condition according with the oil pressure supplied with wheel of a car. In the second example, the service man does not completely tighten the fixed bolt after repairing the car. This causes the ABS warning lamp to light up as the ABS wheel speed sensor cannot detect whether the ABS has been activated. In the third example, the ABS electronic control unit is separated from the soldered part of the inner circuit board. Consequently, the ABS fails in control because the ABS motor pump receives no-signal for the hydraulic unit. The wheel speed sensor has to large durability because of giving signal of acting condition to computer by detected the acceleration and deceleration of wheel of a car. In the fourth example, the ABS warning lamp lights up of when cracks propagate in the circuit board soldering part. The circuit of this computer is very important part for input and output the operating signal of system. Such failures can aggravate the durability of the ABS. Thus, the ABS needs to be optimized to eliminate malfunction phenomenon.

A Study on Development of Current Map Model Based on Electromagnetic Field Design (전자계 설계 기반 전류맵 모델 개발에 관한 연구)

  • Park, Gui-Yeol;Hwang, Yo-Han;Choi, Jong-Sil;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.454-461
    • /
    • 2021
  • To control the torque of the IPMSM, a lookup table is generally used in control system because of its nonlinear characteristics. However, the method of generating the lookup table data has the disadvantage of having difficulty accurately analyzing the changing parameters, generating the current or magnetic flux map is complicated and long test time taken due to motor temperature differences at each test points. In this paper, on the basis of the electromagnetic field design of IPMSM, we devised an electromagnetic field-based magnetic flux map model that can compensate for the pre-generated magnetic flux map through a quick and simple test.

Development of In-wheel Actuator for Active Walking Aids Equipped with Torque Sensor for User Intention Recognition (토크센서 기반 사용자의도 파악이 가능한 보행보조기용 인휠 구동기 개발)

  • Lim, Seung-Hwan;Kim, Tae-Keun;Kim, Dong Yeop;Hwang, Jung-Hoon;Kim, Bong-Seok;Park, Chang Woo;Lee, Jae-Min;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1141-1146
    • /
    • 2014
  • As life expectancy becomes longer, reduction of human muscular strength threatens quality of human life. Many robotic devices have thus been developed to support and help human daily life. This paper deals with a new type of in-wheel actuator that can be effectively used for the robotic devices. BLDC motor, drive board, brake, ARS (Attribute Reference System), and torque sensor are combined in the single actuator module. The torque sensor is used to recognize human intention and the in-wheel actuator drives walking aids in our system. Its feasibility was tested with the active walking aid device equipped with the in-wheel actuator. Based on it, we designed an admittance filter algorithm to react on uphill and downhill drive. By adjusting mass, damping, and spring parameters in accordance with the ARS output, it provided convenient drive to the old on uphill and downhill walks.

A Study on the Control of 4WD EV (4륜 직접구동 전기자동차의 제어에 관한 연구)

  • Chong, U-Sok;Jeon, Beom-Jin;Sul, Seung-Ki;Jung, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.172-174
    • /
    • 1994
  • Due to the environmental considerations and the energy crisis, there has been a revival of electric vehicles since 1960s. Research and development work concerning with electric vehicles (EVs) was becoming more intense in last decade. As compared with conventional internal combustion engine (ICE) cars, EVs have the advantages of clean, quiet, better energy efficiency, less maintenance and improving the load factor of electric power systems. However, EVs usually have a snort running range, bad acceleration performance and high initial cost. The main reason for these shortcomings is the low figure of energy density and the high per energy cost of battery at present technology state. So it is very important to optimize the overall drive system design with respect to the maximum utilization of battery, energy, motor torque and inverter power. This paper describes a demonstration model of electric car which is driven by 4-wheel direct method using the vector control.

  • PDF

The Optimal Design of a Brushless DC Motor Using the Advanced Parallel Genetic Algorithm

  • Lee, Cheol-Gyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.3
    • /
    • pp.24-29
    • /
    • 2009
  • In case of the optimization problems that have many design variables, the conventional genetic algorithms(GA) fall into a trap of local minima with high probability. This problem is called the premature convergence problem. To overcome it, the parallel genetic algorithms which adopt the migration mechanism have been suggested. But it is hard to determine the several parameters such as the migration size and the migration interval for the parallel GAs. Therefore, we propose a new method to determine the migration interval automatically in this paper. To verify its validity, it is applied to some traditional mathematical optimization problems and is compared with the conventional parallel GA. It is also applied to the optimal design of the brushless DC motor for an electric wheel chair which is a real world problem and has five design variables.