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The Optimal Design of a Brushless DC Motor Using the
Advanced Parallel Genetic Algorithm

Cheol-Gyun Lee’

Abstract

In case of the optimization problems that have many design variables, the conventional genetic
algorithms(GA) fall into a trap of local minima with high probability. This problem is called the premature
convergence problem. To overcome it, the parallel genetic algorithms which adopt the migration mechanism
have been suggested. But it is hard to determine the several parameters such as the migration size and the
migration interval for the parallel GAs. Therefore, we propose a new method to determine the rmigration interval
automatically in this paper. To verify its validity, it is applied to some traditional mathematical optimization
problems and is compared with the conventional parallel GA. It is also applied to the optimal design of the
brushless DC motor for an electric wheel chair which is a real world problem and has five design variables.
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1. Introduction

The designer of a traction motor for an electric
wheel chair should try to design a lower weight
motor in order to improve the driving performance,
the running distance and the low material cost.
Therefore the optimal design which uses the
optimization algorithm is tried to satisfy all the
above condition.

The genetic algorithm(GA) is a promising
search technique for finding near-optimal solu-
tions in large space. GA is now widely recognized
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as an effective search paradigm in the artificial
intelligence, the image processing, the VLSI circuit
layout, solving non-linear equations, the optimal
design of an electric machine, and many other
areas. But in the case of the optimization problems
that have many design variables, such as the
optimal design of a brushless DC motor(BLDCM),
the conventional GAs fall into traps of local
minima with high probability. This problem is
called the premature convergence problem
Diversity preservation methods based on a spatial
separation have been proposed in order to avoid it.
The parallel genetic algorithm is most famous
among them. It separates the population to several
sub-populations [1].

The paralld GA is composed of several
sequential algorithms operating simultaneously
which are linked by the genetic operation such as
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the migration. The migration mechanism has
several parameters such as the migration size, the
migration interval, and the migration topology. But
it is hard to determine them Therefore, we
propose a new method to determine the migration
interval automatically in this paper. To verify its
superionity, the proposed method is applied to
some traditional mathematical problems and
compared with the conventional parallel GA.
The proposed method is also applied to the
optimal design of a BLDC motor which is a real
world problem and has five design variables..

2. Paraliel Genetic Algorithm

2.1 The Premature Convergence
Problem

One common problem in traditional GAs is the
premature convergence. It means that GAs find a
local instead of a global optimum. Many variations
on traditional GAs have been devised to address
this problem. Previous researches have focused on
two general approaches to avoid the premature
convergence. The first approach is to lower a
convergence speed so GA can do a more through
search before converging, increasing the chance of
finding a global optimum. These schemes affect
the selection phase. The second approach focuses
on keeping the diversity of a population high by
modifying traditional replacement and mating
operators. Of course, the parallel GA may be seen
as a particularly natural and efficient version of
such approaches [1]. The parallel GA maintains
multiple and separate subpopulations which may
be allowed to evolve independently. This allows
each subpopulation to explore different parts of the
search space, each mantaining its own
high—fitness individuals and controlling to mix
with other subpopulations. The parallel GA models
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the evolution of species in a way more similar to
nature than a single population GA.

2.2 Multi-population Parallel
Genetic Algorithm

There are three main types in the parallel
GAs: 1) global single-population master slave
GA, 2) single population fine-grained, and 3)
multiple-population coarse—grained GA. In a
master-slave GA there is a single population, but
the evaluation of fitness is distributed among
several processors. Fine-grained parallel GA's are
suited for massively parallel computers and consist
of one spatially structured population. Selection
and recombination are restricted to a small
neighborhood, in which some interaction is
permitted.  Multi-population parallel GA  called
coarse-grained GA is very popular. It uses several
subpopulations that evolve independently from
each other for the given number of generation and
exchanges individuals occasionally. It is also
effective in solving larger problems and finding
better solutions in case of using single processor
[2]. Therefore it is selected as the type of parallel
GA in this paper. In this multi-population parallel
GA, the most important topic is the parameter
related to a migration. They are the migration size,
the migration interval, the method of migrant
selection and the migration topology. Many re-
searches on these parameters have been proposed.

Many possibilities exist for the structure of the
migration of individuals between subpopulations
[3-4]. The most general migration strategy is
unrestricted migration. In this method, individuals
may migrate from any subpopulation to another.
The selection of the individuals for migration
takes place at random. And the interval of
migration is predetermined. Fig. 1 is the structure
of the parallel GA using migration mechinism.
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2.3 New Strategy for Migration
Interval

Generally most parallel GAs use the constant
migration interval. The short migration interval
(or frequent migration) retards the convergence
during the final stage. On the contrary the long
migration interval is prone to fall into traps of
local minima [5]. So we use a new strategy for
migration. If the variation of the average fitness
for each subpopulation is under the
pre-determined level (Frw), the migration to other
subpopulation is  started. Otherwise each
subpopulation continues a separate search
independently.

Subpopulation 1

Subpopulation 2 Subpopulation 4

4

Subpopulation 3

Fig. 1. The structure of parallel GA with the
migration strategy

F(i+1)=F (i
! i+1)— F (i) <F,, n

0

, where 1<j<s, 1<i<n,
s: number of subpopulation,
n maximum number of generation

I (1) is satisfied for any subpopulation, it means
that the corresponding subpopulation is converged
to a local minimum and the migration is needed. In
(1), B is the average fitness for each
subpopulation where the number of generation is L
Fig. 2 is the structure of the proposed parallel GA.
And some techniques for genetic operator are
introduced to advance the characteristic of parallel
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GA. They are scaling window and elitism. In the
next section, we will show that the proposed
algorithm searches a better global optimum
effectively.

Start
gen =1

INITIALIZATION

,

MIGRATION

Fig. 2. The structure of parallel GA with a new
migration strategy

2.4 Numerical Examples

Two test functions are used to compare the
performance of the proposed method with the
conventional parallel GAs which use a constant
migration interval {6]. The first test function, F2,
is a two-dimensional function with 25 peaks. The
25 peaks are all of differing heights, ranging from
476.191 to 499.002. The global maximum occurs at
(-32, -32). Fig. 3 is the graph of F2 test function.
The second test function F4 is a four-dimensional
function and it has a minimum value, 0, at all xi=1.

1
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F(z)=100(z, —2})* + (1—=x, ) 3)
+90(z, —22)* + (1 —=,)% +10.5(z, — 1)?
+(z, —1)* +19.8(z, — 1){z, —1)

swhere. —10 < x),x1,,15,1, <10

We run each algorithm 100 times on each test
function and average the searched result. Two
criteria are introduced to evaluate the result. The
first criterion (C1) is the average of searched best
solutions. The second criterion (C2) is the average
of best ten trails out of 100 trials. The parallel GA
has three sub-populations. Therefore the size of
sub-populations for PGA is one-third of simple
GA. Each subpopulation has 20 individuals. The
miximum number of generation is 3000. The
number of migrant individuals is 10. The migrants
In a given subpopulation are selected randomly.

In the case of two-dimensional function (F2),
every method has same result as shown in Table
1. But in the case of four-dimensional function
(F4), the result is different according to a search
method as shown in Table 2. In terms of the
criterion C2, the simple genetic algorithm(SGA)
which uses a single population is inferior to other
methods in the case of four-dimensional function.
This means that the SGA is hard to converge to
the global minimum. It converges to the local
minima. For the conventional PGA, five migration
intervals are selected. When the migration interval
is short, the conventional PGA finds the better
solution in terms of the criterion C1 [5]. But in
terms of the criterion C2, the conventional PGA
has the best result when the migration interval is
30. So the best migration interval can't be
determined because the results are different
according to the given criterion. But the proposed
PGA searches better(lower) solutions than other
methods in any criterion. Fig. 4 is the comparison
of the convergence speed for the F4 test function
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between the simple GA and the new parallel GA.
As shown in Fig. 4, the proposed PGA converges
an optimum faster than the simple GA. From all
the above result, we know that the proposed new
PGA is more powerful than other techniques
particularly in the high dimensional optimization
problems.

Fig. 3. The Graph of F2 test function

Table 1. Performance comparison for F2 test

function
Cl C2
PGA (I= 10) 4990 E+2 4990 E+2
PGA (I= 100) 4990 E+2 4,990 E+2
SGA 4990 E+2 4990 E+2
New PGA 4990 E+2 4,990 E+2

The symbol I is a migration interval in generation.

Table 2. Performance comparison for F4 test

function
Cl C2

PGA (I= 5) 2.5906E-4 5.8066E-07
PGA (I= 10) 3.0161E-4 1.1398E-11
PGA (I= 30) 3.3769E-4 2.1090E-13
PGA (I= 50) 4.1302E-4 5.0399E-12
PGA (I= 100) 6.2976E-4 8.0560E-07
SGA 3.1311E-4 6.6821E-06
New PGA 3.9450E-5 3.8992E-18

The best result on each criterion is shown in boldface.
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Fig. 4. The comparison of convergence
characteristics for F4 test function

3. Optimal design of BLDC
Motor

3.1 Synthesis

Now, the proposed parallel method is applied to
the optimal design of the BLDC motor for an
electric wheel chair. It is a real world and high
dimensional problem. The first step of optimization
is the design synthesis of the BLDC motor. The
synthesis is a procedure for producing the motor
on the basis of a set of design variables, other
design data, and the motar specification. We select
five independent design variables consisting of the
maximum flux density for a stator and a rotor
punching and four geometric vanables. Four
geometric variables are the stator outside radius,
the motor axial length, the rotor outside radius and
the depth of rotor magnet. The air gap length and
the stator slot opening are dictated by mechanical
considerations. Fig. 5 is the cross-section of stator
and rotor of BLDC motor. Topological parameters
suech as the murmber of phases, magnet poles, and slots
per phase are fixed [7]. Therefore the optimization of
the BL.DC motor is a five-dimensional problem. So
the optimal algorithm for a high-dimensional
problem should be used.

(2]

Fig. 5. The cross-section of stator and rotor

3.2 Objective Function and Design
Constraints

The designer of a traction motor for an electric
wheel chair should try to design a lower weight
motor in order to improve the driving performance,
the running distance and the low material cost.
Therefore the weight of the BLDC motor is
selected for the objective function of an optimal
design. The weight of the BLDC motor is
calculated by (4). And the cther characteristics
such as the efficiency of the BLDC motor are
selected as the constraints of optimization.

Wiotat = Wo + W, + W, + W, @
W, = kA, (L+a7,/2)N,Cu, k] )
W, = A, LN, M, ©)
W, = CG({n (R, - R)— N A, )Lk, ("N

+7{(R,,~1, " — RElLk,,) lkg)
W, = Shd%&zi L ®

, Where
W, W, W, W, Weight of stator winding,
magnet, core and shaft [kg]
Cupy M, G, St Density of stator winding,
magnet, core and shaft [kg/m’]
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k., Fill factor of stator slot, 4,:Area of sartor
slot{m’]

L : Axial length of stator{ml, 7,:Coil pitch{m]

N,: No. of slots, N, 'No. of poles

A1 Area of magnet [m], !, Radial length of
magnet[m]

R, R,  Stator outside and inside radius[ml]

R, R, : Rotor outside and inside radiusm]

k,, © Stacking factor for lamination

3.3 Result of Optimal Design

The 210{w], 4 pole, three phase BLDC motor for
an electric wheel chair is designed as a sample
design. The rated speed is 2500lpm] and the
battery voltage is 24[V]. Fig. 6 is the convergence
characteristics of motor weight during the
optimization process. The weight of initial model
is 3.33lkg] and the weight of optimized model is
257kgl. Through the optimization, the weight of
motor is reduced than an initial design by 23[%].

34,

Weight of Motor[kg]
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Fig. 6. The convergence characteristics of motor
weight

4. Conclusion
To overcome the premature convergence

problem, the new migration technique for a parallel
GA is introduced in this paper. We showed that
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the proposed parallel GA found better solution
than a simple GA and a conventional Parallel GA,
particularly in the high-dimensional problems. The
proposed parallel GA succeeded in reducing the
weight of motor when it was applied to the
optimal design of the BLDC motor for an electric
wheel chair.
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