• 제목/요약/키워드: In-wheel Driving System

검색결과 257건 처리시간 0.029초

다양한 인체치수에 따른 산업차량의 핸들과 폐달 위치에 관한 연구 (A Study about Steering Wheel and Pedal Position of Industrial Vehicle by the Various Body Dimensions)

  • 최진봉;구락조;정명철;박범
    • 산업경영시스템학회지
    • /
    • 제29권4호
    • /
    • pp.1-7
    • /
    • 2006
  • This study determined the optimal positions of the movable steering wheel and pedal systems of industrial vehicle by various body dimensions. The position of objects and starting driving posture were measured by Martin-type anthropometer and goniometer. The X, Y and Z axis of movable steering wheel and pedal systems were measured horizon distance from right side to left side, horizon distance from front side to rear side and vertical distance from floor to ceiling. During the experiment in order to exclude learning effectiveness with forklift driving, 27 subjects who had male not experiences in driving a forklift used in the experiment. The relationship between the position of steering wheel and driver's posture with body dimensions was analyzed by using correlation relation and paired comparison t-test based on the measured data. The pedal location in X and Z axises was not related with various body dimensions. Also, the steering wheel was different among the angles of the right elbow and shoulder depending on the various body dimensions.

실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발 (Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque)

  • 손승완;김기영;차석원;임원식;김정윤
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구 (A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation)

  • 신행봉;차보남
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

4륜 독립구동형 농업용 플랫폼의 주행 궤적 추종 성능 향상을 위한 휠 슬립 검출 및 보상제어 알고리즘 연구 (Slip Detection and Control Algorithm to Improve Path Tracking Performance of Four-Wheel Independently Actuated Farming Platform)

  • 김봉상;조성우;문희창
    • 로봇학회논문지
    • /
    • 제15권3호
    • /
    • pp.221-232
    • /
    • 2020
  • In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel's motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform's target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.

Detecting Driver Fatigue by Steering Wheel Grip Force

  • LEE, KYEHOON;HYUN, SUNG-AE;OAH, SHEZEEN
    • International Journal of Contents
    • /
    • 제12권1호
    • /
    • pp.44-48
    • /
    • 2016
  • Driver fatigue is a major cause of fatal road accidents and has significant implications in road safety. In recent years, researchers have investigated steering wheel grip force as an alternative method to detect driver fatigue noninvasively and in real time. In this study, a fatigue detection system was developed by monitoring the grip force and changes in the grip force were measured while participants' engaged in an interactive simulated driving task. The study also measured the participants' subjective sleepiness to ensure the validity of measuring grip force. The results indicated that while participants engaged in a driving task, steering wheel grip force decreased and subjective sleepiness increased concurrently over time. The possible applications of the driver fatigue detection system by steering wheel grip force and future guidelines are discussed.

Intelligent Online Driving System

  • Xuan, Chau-Nguyen;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.479-479
    • /
    • 2000
  • Recently, IVS(Intelligent Vehicle Systems) or ITS(Intelligent Traffic Systems) are much concerned subjects of automotive industry. In this paper, we will introduce an Intelligent Online Driving System for a car. This system allows the driver to be able to drive the car just by operating an integrated joystick. The proposed driving system could be implemented into any car and the key point of the design is that the driver still can drive the car as normal without using the joystick. Our Intelligent Online Driving System includes the integrated joystick, steering wheel control system, brake and acceleration (B&A)pedals control system, and the central control computer system. Steering wheel and B&A pedals are controlled by AC servo-motors. The integrated joystick generates the desired positions and the embedded computer controls these two servomotors to track the commands given by joystick. The control method for two servo-motors is PID control.

  • PDF

바퀴구름운동을 고려한 역진자 로봇의 주행 (Driving of Inverted Pendulum Robot Using Wheel Rolling Motion)

  • 이준호;박치성;황종명;이장명
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

가상 운전 시뮬레이터를 이용한 족동 조향 시스템의 운전 성능 평가 (Driving Performance Evaluation Using Foot Operated Steering System in the Virtual Driving Simulator)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권4호
    • /
    • pp.197-204
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of normal subjects for controlling the steering wheel by using foot operated steering devices in the driving simulator. Many people with complete bilateral loss or loss of use of upper limbs but with normal lower limbs are frequently left without use and/ or control of their hands, arms, or the upper extremities of their bodies. As a result, persons disabled in this manner have problems in operation an automobile because they cannot grasp and manipulate a conventional steering wheel. Therefore, if foot operated steering devices are used for controlling the vehicle on in people with disabilities, the disabled people could improve their community mobility by driving a car safely. Ten normal subjects were involved in this research to evaluate steering performance by using three types of steering devices(conventional steering wheel, pedal type foot steering, circular type foot steering) in driving simulator. STISim Drive 3 program was used for testing the driving performance in two road scenarios: straight road and curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA to compare the influences of two factors(type of foot steering device and road scenario) in the three dependent variables of steering performance(standard deviation of lateral position, the lateral position of vehicle and the number of line crossing). The average values of the three dependent variables(standard deviation of lateral position, lateral position and the number of line crossing) of driving performance were significantly smaller for conventional steering wheel or pedal type foot steering than circular type foot steering.

고슬립을 이용한 6 륜구동/6 륜조향 차량 고장 안전 주행 제어 (Fault-Tolerant Driving Control of Independent Steer-by-Wire System for 6WD/6WS Vehicles Using High Slip)

  • 나재원;김원균;이경수;이종석;이대옥
    • 대한기계학회논문집A
    • /
    • 제37권6호
    • /
    • pp.731-738
    • /
    • 2013
  • 본 논문은 6 륜 독립구동/독립조향 차량의 독립 스티어-바이-와이어 장치의 고장 안전 주행 제어방법을 제시하였다. 조향부 고장 휠의 횡방향 타이어 힘이 차량 선회 운동에 저항력으로 작용할 수 있으므로, 이를 줄이기 위하여 본 고장 안전 주행 제어 알고리즘은 조향부 고장 휠에 높은 슬립률이 발생하도록 토크 입력을 가한다. 고슬립으로 인한 조향부 고장 휠의 종방향 타이어 힘 증가를 고려하기 위하여 종방향 타이어 힘을 추정하여 고장나지 않은 휠의 구동력 최적 분배에 구속 조건에 포함시킨다. 개루프 조향 및 폐루프 조향 시뮬레이션 결과 조향부 고장이 발생한 차량의 주행시 고장을 고려하지 않은 최적 구동력 분배 제어에 비하여 본 알고리즘 적용시 차량의 주행 성능이 보정됨을 확인하였다.

전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구 (A Study on Dynamic Characteristic for the Bi-modal Tram with All-Wheel-Steering System)

  • 이수호;문경호;전용호;박태원;이정식;김덕기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.99-108
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

  • PDF