• Title/Summary/Keyword: In-water Algorithm

Search Result 1,379, Processing Time 0.025 seconds

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.

Collision Risk Assessment by using Hierarchical Clustering Method and Real-time Data (계층 클러스터링과 실시간 데이터를 이용한 충돌위험평가)

  • Vu, Dang-Thai;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.483-491
    • /
    • 2021
  • The identification of regional collision risks in water areas is significant for the safety of navigation. This paper introduces a new method of collision risk assessment that incorporates a clustering method based on the distance factor - hierarchical clustering - and uses real-time data in case of several surrounding vessels, group methodology and preliminary assessment to classify vessels and evaluate the basis of collision risk evaluation (called HCAAP processing). The vessels are clustered using the hierarchical program to obtain clusters of encounter vessels and are combined with the preliminary assessment to filter relatively safe vessels. Subsequently, the distance at the closest point of approach (DCPA) and time to the closest point of approach (TCPA) between encounter vessels within each cluster are calculated to obtain the relation and comparison with the collision risk index (CRI). The mathematical relationship of CRI for each cluster of encounter vessels with DCPA and TCPA is constructed using a negative exponential function. Operators can easily evaluate the safety of all vessels navigating in the defined area using the calculated CRI. Therefore, this framework can improve the safety and security of vessel traffic transportation and reduce the loss of life and property. To illustrate the effectiveness of the framework proposed, an experimental case study was conducted within the coastal waters of Mokpo, Korea. The results demonstrated that the framework was effective and efficient in detecting and ranking collision risk indexes between encounter vessels within each cluster, which allowed an automatic risk prioritization of encounter vessels for further investigation by operators.

Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia (동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Joon;Kondo, Hiroaki;Gamo, Minoru;Asanuma, Jun;Saigusa, Nobuko;Wang, Shaoqiang;Han, Shijie
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.174-184
    • /
    • 2009
  • Evapotranspiration (ET) is one of the major hydrologic processes in terrestrial ecosystems. A reliable estimation of spatially representavtive ET is necessary for deriving regional water budget, primary productivity of vegetation, and feedbacks of land surface to regional climate. Moderate resolution imaging spectroradiometer (MODIS) provides an opportunity to monitor ET for wide area at daily time scale. In this study, we applied a MODIS-based ET algorithm and tested its reliability for nine flux tower sites in East Asia. This is a stand-alone MODIS algorithm based on the Penman-Monteith equation and uses input data derived from MODIS. Instantaneous ET was estimated and scaled up to daily ET. For six flux sites, the MODIS-derived instantaneous ET showed a good agreement with the measured data ($r^2=0.38$ to 0.73, ME = -44 to $+31W\;m^{-2}$, RMSE =48 to $111W\;m^{-2}$). However, for the other three sites, a poor agreement was observed. The predictability of MODIS ET was improved when the up-scaled daily ET was used ($r^2\;=\;0.48$ to 0.89, ME = -0.7 to $-0.6\;mm\;day^{-1}$, $RMSE=\;0.5{\sim}1.1\;mm\;day^{-1}$). Errors in the canopy conductance were identified as a primary factor of uncertainty in MODIS-derived ET and hence, a more reliable estimation of canopy conductance is necessary to increase the accuracy of MODIS ET.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0- (국내 실정에 적합한 스마트팜 개발 전략 -6차산업의 발전을 위한 ICT 기술적 특성을 중심으로-)

  • Han, Sang-Ho;Joo, Hyung-Kun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.147-157
    • /
    • 2022
  • This study tried to propose a smart farm technology strategy suitable for the domestic situation, focusing on the differentiation suitable for the domestic situation of ICT technology. In the case of advanced countries in the overseas agricultural industry, it was confirmed that they focused on the development of a specific stage that reflected the geographical characteristics of each country, the characteristics of the agricultural industry, and the characteristics of the people's demand. Confirmed that no enemy development is being performed. Therefore, in response to problems such as a rapid decrease in the domestic rural population, aging population, loss of agricultural price competitiveness, increase in fallow land, and decrease in use rate of arable land, this study aims to develop smart farm ICT technology in the future to create quality agricultural products and have price competitiveness. It was suggested that the smart farm should be promoted by paying attention to the excellent performance, ease of use due to the aging of the labor force, and economic feasibility suitable for a small business scale. First, in terms of economic feasibility, the ICT technology is configured by selecting only the functions necessary for the small farm household (primary) business environment, and the smooth communication system with these is applied to the ICT technology to gradually update the functions required by the actual farmhouse. suggested that it may contribute to the reduction. Second, in terms of performance, it is suggested that the operation accuracy can be increased if attention is paid to improving the communication function of ICT, such as adjusting the difficulty of big data suitable for the aging population in Korea, using a language suitable for them, and setting an algorithm that reflects their prediction tendencies. Third, the level of ease of use. Smart farms based on ICT technology for the development of the Industry6.0 (1.0(Agriculture, Forestry) + 2.0(Agricultural and Water & Water Processing) + 3.0 (Service, Rural Experience, SCM)) perform operations according to specific commands, finally suggested that ease of use can be promoted by presetting and standardizing devices based on big data configuration customized for each regional environment.

Prelaunch Study of Validation for the Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 자료 검정을 위한 사전연구)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Son, Young-Baek;Cho, Seong-Ick;Min, Jee-Eun;Yang, Chan-Su;Ahn, Yu-Hwan;Shim, Jae-Seol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.251-262
    • /
    • 2010
  • In order to provide quantitative control of the standard products of Geostationary Ocean Color Imager (GOCI), on-board radiometric correction, atmospheric correction, and bio-optical algorithm are obtained continuously by comprehensive and consistent calibration and validation procedures. The calibration/validation for radiometric, atmospheric, and bio-optical data of GOCI uses temperature, salinity, ocean optics, fluorescence, and turbidity data sets from buoy and platform systems, and periodic oceanic environmental data. For calibration and validation of GOCI, we compared radiometric data between in-situ measurement and HyperSAS data installed in the Ieodo ocean research station, and between HyperSAS and SeaWiFS radiance. HyperSAS data were slightly different in in-situ radiance and irradiance, but they did not have spectral shift in absorption bands. Although all radiance bands measured between HyperSAS and SeaWiFS had an average 25% error, the 11% absolute error was relatively lower when atmospheric correction bands were omitted. This error is related to the SeaWiFS standard atmospheric correction process. We have to consider and improve this error rate for calibration and validation of GOCI. A reference target site around Dokdo Island was used for studying calibration and validation of GOCI. In-situ ocean- and bio-optical data were collected during August and October, 2009. Reflectance spectra around Dokdo Island showed optical characteristic of Case-1 Water. Absorption spectra of chlorophyll, suspended matter, and dissolved organic matter also showed their spectral characteristics. MODIS Aqua-derived chlorophyll-a concentration was well correlated with in-situ fluorometer value, which installed in Dokdo buoy. As we strive to solv the problems of radiometric, atmospheric, and bio-optical correction, it is important to be able to progress and improve the future quality of calibration and validation of GOCI.

Evaluation of Organic Sediments Qualities for the Urban Streams in the Busan City (부산시 하천퇴적물의 유기 오염도 평가)

  • Lee, Jun-Ki;Kim, Seog-Ku;Song, Jae-Hong;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.975-982
    • /
    • 2009
  • The purpose of this study is to offer informations about the current conditions and basic data of stream sediments in Busan city. So we first select 14 urban streams and collect sediment samples. Then, COD, proximate analysis, volatile solid, organic carbon content and elemental analysis were conducted to determine characteristics of the sediments. Results show that COD, volatile solid, Organic carbon content, T-N of sediment are determined in the range of 1.20~75.07 mg/g, 0.19~11.54%, 0.23~34.21% and 0.76~3.46%, respectively. Analysis data of sediments were compared with USEPA sediment quality standards and ontario sediment quality guidelines. As a result, when compared with COD, volatile solid and organic carbon content values, Bosucheon and Gudeokcheon are relatively heavily contaminated than the remainder sampling sites. But when compared with T-N values, all of sites were evaluated as seriously contaminated. Finally, for the determination of the correlations between sediment COD and moisture contents, ash contents, volatile solid, total organic carbon, total nitrogen and total carbon, linear model was fitted to the data using a least-squares algorithm. As a result, Linear model was well fitted to each data with good values of the correlation coefficient (r=0.9664~0.8501).

5GHz Wi-Fi Design and Analysis for Vehicle Network Utilization (차량용 네트워크 활용을 위한 5GHz WiFi 설계 및 분석)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.18-25
    • /
    • 2020
  • With the development of water internet technology, data communication between objects is expanding. Research related to data communication technology between vehicles that incorporates related technologies into vehicles has been actively conducted. For data communication between mobile terminals, data stability, reliability, and real-time performance must be guaranteed. The 5 GHz Wi-Fi band, which is advantageous in bandwidth, communications speed, and wireless saturation of the wireless network, was selected as the data communications network between vehicles. This study analyzes how to design and implement a 5 GHz Wi-Fi network in a vehicle network. Considering the characteristics of the mobile communication terminal device, a continuous variable communications structure is proposed to enable high-speed data switching. We simplify the access point access procedure to reduce the latency between wireless terminals. By limiting the Transmission Control Protocol Internet Protocol (TCP/IP)-based Dynamic Host Configuration Protocol (DHCP) server function and implementing it in a broadcast transmission protocol method, communication delay between terminal devices is improved. Compared to the general commercial Wi-Fi communication method, the connection operation and response speed have been improved by five seconds or more. Utilizing this method can be applied to various types of event data communication between vehicles. It can also be extended to wireless data-based intelligent road networks and systems for autonomous driving.