• Title/Summary/Keyword: In-vehicle interface

Search Result 413, Processing Time 0.019 seconds

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel (알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향)

  • Kim, Nam-Kyu;Kim, Byung-Chul;Jung, Byung-Hoon;Song, Sang-Woo;Nakata, K.;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.

Implementation of LabVIEW based Testbed for MHA FTSR (LabVIEW 기반의 MHA 명령방식 비행종단수신기 점검장비 구현)

  • Kim, Myung-Hwan;Hwang, Soo-Sul;Lim, You-Cheol;Ma, Keun-Su
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • FTSR(Flight Termination System Receiver) is a device that receives a ground command signal to abort a flight mission when abnormal conditions occur in the space launch vehicle. The secure tone command message shall consist of a series of 11 character tone pattern. Each character consists of the sum of two tones which taken from a set of 7 tones defined by IRIG(Inter-Range Instrumentation Group) in the audio frequency range. The MHA(Modified High alphabet) command adds a security feature to the secure tone command by using the predefined difference code. In order to check the function and performance of MHA FTSR, which is under development, for KSLV-II, the testbed should have functions of RF signal generation, receiver's output port monitoring, RS-422 communication and test data management. In this paper, we first briefly introduce MHA command and FTSR interface, and then show the LavVIEW based testbed include its H/W configuration, S/W implementation and test results.

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

A Design and Implementation of Software Architecture for IPC in Vehicles Using Modeling Methodology (모델링 기법을 이용한 차량용 IPC 소프트웨어구조 설계 및 구현)

  • Song, Bong-Gi;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1567-1572
    • /
    • 2012
  • An IPC(instrument panel Cluster) is a useful device that provides driving information to the driver. The information includes the vehicle speed, RPM, mileage, etc. The traditional IPC has been mostly implemented with mechanical technique. According to increment of needs for the convenience of IPC by user, the IPC must provide graphical interface and efficient driving information. Also the user-friendly IPC is needed by drivers. Thus flexible and robust software structure and development methods are required in order to develop IPC. In this paper, we propose software architecture and design method for the IPC using modeling method. We use MVC model and UML to model software architecture because they have flexible and robust characteristics. We can develop the various forms of information screen by separating views from model by using state diagram and class diagram in UML. Through this, the cost saving and ease of maintenance can be expected. The development time and cost can be reduced by using proposed method.

A Design and Implementation of Software Architecture for IPC in Vehicles Using Modeling Methodology (모델링 기법을 이용한 차량용 IPC 소프트웨어구조 설계 및 구현)

  • Song, Bong-Gi;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1321-1326
    • /
    • 2012
  • An IPC(instrument panel Cluster) is a useful device that provides driving information to the driver. The information includes the vehicle speed, RPM, mileage, etc. The traditional IPC has been mostly implemented with mechanical technique. According to increment of needs for the convenience of IPC by user, the IPC must provide graphical interface and efficient driving information. Also the user-friendly IPC is needed by drivers. Thus flexible and robust software structure and development methods are required in order to develop IPC. In this paper, we propose software architecture and design method for the IPC using modeling method. We use MVC model and UML to model software architecture because they have flexible and robust characteristics. We can develop the various forms of information screen by separating views from model by using state diagram and class diagram in UML. Through this, the cost saving and ease of maintenance can be expected. The development time and cost can be reduced by using proposed method.

Optimal Design of the Steel Wheel's Disc Hole Using Approximation Function (근사함수를 이용한 스틸휠의 디스크 홀의 최적화)

  • 임오강;유완석;김우현;조재승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.105-111
    • /
    • 2003
  • Wheel for passenger car support the car weight with tires, and they transmit rolling and braking power into the ground. Whittling away at wheel weight is more effective to boost fuel economy than lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model, and ANSYS package is selected for analyzing the design model. It has difficulties to interface these commercial software directly. For Combining both programs, response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim, and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel whee. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm, which used the second-order information in the direction finding problem and uses the active set strategy, is used for solving optimization problems.

Cognitive and Behavioral Effects of Augmented Reality Navigation System (증강현실 내비게이션의 인지적.행동적 영향에 관한 연구)

  • Kim, Kyong-Ho;Cho, Sung-Ik;Lee, Jae-Sik;Wohn, Kwang-Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.9-20
    • /
    • 2009
  • Navigation system providing route-guidance and traffic information is one of the most widely used driver-support system these days. Most of the navigation system is based on the 2D map paradigm so the information is ed and encoded from the real world. As a result it imposes a cognitive burden to the driver to interpret and translate the ed information to real world information. As a new concept of navigation system, augmented-reality navigation system (AR navigation) is suggested recently. It provides navigational guidance by imposing graphical information on real image captured by camera mounted on a vehicle in real-time. The ultimate goal of navigation system is to assist the driving task with least driving workload whether it is based on the abstracted graphic paradigm or realistic image paradigm. In this paper, we describe the comparative studies on how map navigation and AR navigation affect for driving tasks by experimental research. From the result of this research we obtained a basic knowledge about the two paradigms of navigation systems. On the basis of this knowledge, we are going to find the optimal design of navigation system supporting driving task most effectively, by analyzing characteristics of driving tasks and navigational information from the human-vehicle interface point of view.

The Study on an Automated Generation Method of Road Drawings using Road Survey Vehicle (도로교통안전점검차량을 이용한 도로의 자동도면화 생성 연구)

  • Lee, Jun Seok;Yun, Duk Geun;Park, Jae Hong
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.91-98
    • /
    • 2014
  • PURPOSES : This study is to develop a automate road mapping system using ARASEO(Automated Road Analysis and Safety Evaluation TOol) for road management. METHODS : The road survey van named ARASEO(Automated Road Analysis and Safety Evaluation TOol) was used to generate highway drawings for Korea National Road number 37 automatically. In order to generate the highway drawings for purpose of road management, it is required to acquired the information for highway alignment, road width and road facilities such as safety barrier and road sign. Therefore the survey van acquired and analyzed the road width, median and guardrail data using rear side laser sensor of ARASEO and recognized the traffic control sign and chevron sign using foreside camera images. Also the highway alignment which is the basic information for highway drawing can be analyzed by acquisition the every 1m positional and attitude data using GPU and IMU sensor and developed algorithm. Finally, in this research the CAD based drawing software was developed to draw highway drawing using the analysis result from ARASEO. RESULTS : This study showed the comparison result of the surveyed road width and drawing data. To make the drawing of the road, we made the Autocad ARX program witch run in CAD menu interface. CONCLUSIONS : Using this program we can create the road center line, every 500m horizontal and vertical ground plan drawing automatically.