• Title/Summary/Keyword: In-situ rock properties

Search Result 116, Processing Time 0.028 seconds

A Study on the Applicable Methods of Investigation for Cutting Slope Design (깍기 비탈면 설계에서의 지질조사 기법의 적용성 분석)

  • Lee, Su-Gon;Choi, Kyeong-Chim;Kim, Jae-Heun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.100-111
    • /
    • 2006
  • This study was carried out to increase the efficiency of site investigation through the evaluation of the applicable methods of investigation for cutting slope design. In an effort to find out the applicability of the method employed during the slope investigation, some tests were carried out on 6 subjects i.e location of weak zones, characteristics of discontinuities, distribution of strata, in situ tests for geo-technical properties, laboratory test and estimation of weathering. The method was highly applicable and produced expected results during the test of weak zones, discontinuities and distribution of strata. In order to apply the method to in- situ test for geo-technical properties and laboratory test on soil and rock slope, a statistic analysis of the existing data were required in advance. However its design applicability on rock slope was good although actual cases of application were not many due to limitation of the cases for investigation. The method was frequently referenced but not actually applied for anti seismic design test and estimation of weathering.

A Study on the Behavior Prediction of Underground Structures by Back Analysis (역해석에 의한 지하구조체의 거동예측에 관한 연구)

  • 장정범;김문겸
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design underground structures safely and economically. Especially, the elastic modulus and the in-situ stresses are very important parameters in predicting the behavior of the underground structure. Therefore, the back analysis using the field measurement data is developed to determine accurately the elastic modulus and the in-situ stresses of the underground structural system in this study. A back analysis using the combined finite and boundary element is developed. It can consider the far field boundary condition and is efficient in computation. In this study, a back analysis is performed to predict behaviors of underground structures for the real construction site. The comparison between the results of the back analysis with field measurement data and the obtained material properties from the field test shows good agreement for the real construction site.

  • PDF

A Study on Numerical Technique to Enhance In-Situ Applicability and to Overcome Uncertainty in Geo-Material Properties (현장 적용성 향상 및 지반재료 물성의 불확실성 극복을 위한 수치해석법 개발 기초연구)

  • Kim, Hyung-Mok;Synn, Joong-Ho;Inoue, Junya
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • Material properties of geomaterials are usually heterogeneous. And the limitted number of investigation for the subsurface material properties in terms of boreholes are not sufficient enough for identifying the heterogeneity. In most civil engineering work, pre-investigation results can be different from those by in-situ inspection during the construction work. With these points of view, a new analysis concept aiming to evaluate the uncertainty resulted from the heterogeneity of the geomaterial properties as well as to enhance a construction workability and design qualify by a prompt feedback of in-situ conditions was proposed. It was accomplished by linking the Element Free analysis and pre-developed stochastic methods represented by Karhunen-Loeve expansion. Simple ID problem was solved by the developed method, and its validity as well as the characteristic results by different stochastic methods were clarified.

Mechanical behavior of an underground research facility in Korea Atomic Energy Research Institute

  • Kwon S.K.;Cho W.J.;Hahn P.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.245-252
    • /
    • 2005
  • An underground research facility (KURF) is under construction at KAERI for the in situ studies related to the validation of a HLW disposal system. For the safe construction and long-term researches at KURF, mechanical stability of the facility should be evaluated. In this study, 3D mechanical stability analysis using the rock mass properties determined from various in situ as well as laboratory tests was carried out. From the analysis, it was possible to predict the rock deformation, stress concentration, and plastic zone developed before and after the excavation. A test blasting was performed to characterize the site dependent dynamic response, which can be used for the prediction of the blasting impact on the facilities in KAERI.

  • PDF

The Effect of Rock Joints and Ground Water on the Thermal Flow through Rock Mass (절리 및 지하수가 암반의 열전파 특성에 미치는 영향)

  • 박연준;유광호;신희순;신중호
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.220-228
    • /
    • 2002
  • Thermal flow through jointed rock mass was analyzed by numerical methods. The effect of a single set of joints on the heat conduction was analyzed by one-dimensional model and compared with the analytical solution. When a joint is completely dry, the joint behaves as a thermal break inducing jumps in temperature distribution even at steady state. Therefore when joints are completely dry, individual joint has to be taken into consideration to get a good result. When joints are partially or fully saturated, the thermal conductivity of the joints increases drastically and the jumps in temperature distribution become less severe. Therefore the effect of joint in heat conduction can be well absorbed by continuum anisotropic model whose thermal properties represent overall thermal properties of the intact part and the discontinuities. Since the effect of joints becomes less important as the degree of the saturation increases, the overall thermal response of the rock mass also becomes close to isotropic. Therefore it can be concluded that a great effort has to be made to obtain a precise in-situ thermal properties in order to get a good prediction of the thermal response of a jointed rock mass.

Determination of realistic rock strength of slope considering geological characteristics (사면의 지질특성을 고러한 암반강도 결정)

  • Song, Won-Kyung;Sunwoo, Choon;Park, Chan;Shin, Hee-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10b
    • /
    • pp.19-30
    • /
    • 2001
  • This paper represents a case study to determine optimal rock properties and to analyse the safety of slopes excavated in faulted and severly weathered ground. The study site consists of two slopes with a length of 240m and a height of 30m in contact with a tunnel. Significant efforts have been exerted for determining the proper strength parameters such as cohesion and internal friction of rockmass by back analyses as well as laboratory and in-situ tests. Limit equilibrium analyses have also been conducted using these properties.

  • PDF

Reliability Analysis of Plane Failure in Rock Slope (암반사면의 평면파괴에 대한 신뢰성해석)

  • 장연수;오승현;김종수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.119-126
    • /
    • 2002
  • A reliability analysis is performed to investigate the influence of the uncertainty from few in-situ samples and inherent heterogeneity of the ground on the probability of failure for a rock cut slope. The results are compared with those of deterministic slope stability analysis. The random variables used are unit weight of the rock, the angle of potential slope of failure, and cohesion and internal friction angle of joints. It was found that the rock slope in which the factor of safety satisfied the minimum safety factor in the deterministic analysis has high probability of failure in the reliability analysis when the weak geological strata are involved in the cut slope. The probability of failure of rock slope is most sensitive to the mean and standard deviation of cohesion in rock joint among the random soil parameters included in the reliability analysis. Sensitivities of the mean values are larger than those of standard deviations, which means that accurate estimation of the mean for the in-situ geotechnical properties is important.

Application of hydraulic cylinder testing to determine the geotechnical properties of earth-filled dams

  • Rodriguez, Roman F.;Nicieza, Celestino G.;Gayarre, Fernando L.;Lopez, Francisco L. Ramos
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.483-498
    • /
    • 2015
  • This article describes a new in-situ load test called the Hydraulic Cylinder Test (HCT) and its application to determine the geotechnical properties of soil-rock mixtures. The main advantages of the test are its easy implementation, speed of execution and low-cost. This article provides a detailed description of the equipment and the test procedure, and examines a case study of its application to determine the geotechnical properties of an earth-filled dam for a tailings pond. The containment dams of the ponds are made from blocks of gypsum and marl, obtained from the excavation of the ponds, mixed in a matrix of sands and clays. The size of the rocks varies between 1 and 30 cm. The HCT is particularly useful for determining the geotechnical properties of this type of soil-rock mixture. Nine HCTs were carried out to determine its strength (c, ${\phi}$) and deformation (B, G) properties. The results obtained were validated using the Bim strength criterion, recently proposed, and some pressure meter tests carried out beforehand. The properties obtained are used to analyze the stability of the dam using computer simulations and a modification to its design is proposed.

Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel (사용후핵연료 심층처분을 위한 암석의 간접복합거동 연구사례)

  • Hoyoung, Jeong;Juhyi, Yim;Ki-Bok, Min;Sangki, Kwon;Seungbeom, Choi;Young Jin, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.411-434
    • /
    • 2022
  • In deep geological disposal concept for spent nuclear fuel, it is well-known that rock mass at near-field experiences the thermal-hydraulic-mechanical (THM) coupled behavior. The mechanical properties of rock changes during the coupled process, and it is important to consider the changes into the analysis of numerical simulation and in-situ tests for long-term stability evaluation of nuclear waste disposal repository. This report collected the previous studies on indirect coupled behaviors of rock. The effects of water saturation and temperature on some mechanical properties of rock was considered, while the change in hydraulic conductivity of rock due to stress was included in the indirect coupled behavior.

Assessment of Rock Mass Properties Ahead of Tunnel Face Using Drill Performance Parameters (천공데이터를 활용한 터널 막장 전방 암반특성 평가)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Chang, Soo-Ho;Seo, Kyeong-Won;Lee, Seung-Do
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.67-77
    • /
    • 2007
  • The drill monitoring data are useful for the detection of abrupt and unexpected changes in ground renditions. This paper introduces a new approach to how drill performance parameters can be used for the prediction of quantitative rock mass properties ahead of tunnel face and the blasting design. The drill monitoring parameters available for the predictions include the instantaneous advance speed, thrust force, torque, tool pressure and penetration rate. The assessment of the drill monitoring parameters will be able to build a database provided that in-situ drill monitoring informations are accumulated and enable us to make a reasonable blast design based on quantitative assessment of rock mass.