• Title/Summary/Keyword: In-situ resource utilization

Search Result 20, Processing Time 0.028 seconds

Experimental Evaluation of Ice-regolith Mixture Settlement Caused by Lunar Ice Extraction (달 얼음-월면토 결합 형태에 따른 얼음 추출로 발생하는 침하량 평가)

  • Lee, Jangguen;Gong, Zheng;Jin, Hyunwoo;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.13-19
    • /
    • 2023
  • Lunar ice is a resource available for future human exploration in deep space and long-term extraterrestrial habitat. However, the origin and nature of lunar ice remains unclear. In addition to remote sensing, international space agencies are competitively planning and conducting missions for lunar surface exploration to determine the existence and resource extent of lunar ice. If a sufficient amount of lunar ice is confirmed, its future in-situ resource utilization is expected to be greatly beneficial. However, due to ice extraction, settlement may occur, which should be taken into account from a geotechnical engineering perspective. Herein, experimental investigations of the potential settlement caused by lunar ice extraction were conducted and different textures of lunar ice were simulated. Consequently, it was confirmed that significant settlement occurs even at the initial water content of ~10% in lunar regolith simulant-ice-mixed soil.

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

A Research Trend on Lunar Resources and Lunar Base (달 자원 탐사와 달 기지 연구 동향)

  • Kim, Kyeong Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.373-384
    • /
    • 2017
  • A new era with the $4^{th}$ Industrial Revolution certainly brings new opportunities for human to explore human's activities outside of the Earth. After the Apollo program, exploration for lunar resources and establishment of lunar base seem to be in reality. This could be due to new findings by the LCROSS and LRO proving the advanced scientific development and new scientific results about the moon from Asian countries including China with Chang'E missions. It is expected that fossil fuels will be in shortage in the near future and at this time, Helium-3 could be an energy resource as a replacement of the fossil fuels. At present it is well known that countries like Russia, USA, and Europe will continue to investigate on lunar exploration especially with landers toward future human activities on the moon to establish a lunar base. With this point of view, it is important for human to understand lunar resources and prepare for prospective utilization of lunar resources. This review paper considers on a point of view in both lunar resource exploration and establishment of lunar base.

State of the Art in the Development of Methane/Oxygen Liquid-bipropellant Rocket Engine (메탄/산소 이원액체추진제 로켓엔진 기술개발 동향)

  • Kim, Jeong Soo;Jung, Hun;Kim, Jong Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.120-130
    • /
    • 2013
  • A study was conducted for the performance characteristics of methane taking recently the limelight in the world as a next-generation propellant, with the survey for state of the art in the development of methane/oxygen rocket engine being accompanied. Liquid methane as a rocket fuel has the favorable characteristics such as non-toxic, low cost, regenerative cooling capability, and potential for in-situ resource utilization (ISRU). The combination of liquid methane and liquid oxygen also provides the excellent performance including high specific impulse and low system mass. For these reasons, many researches have been actively carried out on the methane/oxygen engine, nevertheless, its technology readiness level is not that high enough just yet. Therefore, it is judged that it is the time to mitigate the technical gap with the space technology of advanced countries through a swift onset of the development of methane rocket engine.

Research Trend and Histories of Rocket Engines using Hydrogen Peroxide and Liquid Methane as Green Propellants (친환경 추진제인 과산화수소와 액체메탄의 활용 역사와 연구 동향)

  • Kim, Sun-Jin;Lee, Yang-Suk;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.46-58
    • /
    • 2010
  • Hydrogen peroxide(HP) and liquid methane have deserved renewed considerations as green propellants in recent years, because main design concerns in the development of the new generation propulsion system for spacecrafts are concentrated on low operation cost and environmental cleanness. Although HP has a long history of application to aerospace propulsion systems due to high density, mono-propellant characteristics and low toxicity, it had been replaced by hydrazine and liquid oxygen due to extreme performance requirement during the cold war. But HP has received a renewed interest due to its increased stability and many researches have been conducted to develop high performance LREs(Liquid Rocket Engines) using HP. Liquid methane has also received a new interest in rocket propulsion system for the future space exploration according to its possibility of ISRU(In-Situ Resource Utilization).

Development Trends of Liquid Methane Rocket Engine and Implications (액체로켓 메탄엔진 개발동향 및 시사점)

  • Lim, Byoungjik;Kim, Cheulwoong;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung;Ahn, Kyubok;Namkoung, Hyuck-Joon;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.119-143
    • /
    • 2021
  • Selecting liquid methane as fuel is a prevailing trend for recent rocket engine developments around the world, triggered by its affordability, reusability, storability for deep space exploration, and prospect for in-situ resource utilization. Given years of time required for acquiring a new rocket engine, a national-level R&D program to develop a methane engine is highly desirable at the earliest opportunity in order to catch up with this worldwide trend towards reusing launch vehicles for competitiveness and mission flexibility. In light of the monumental cost associated with development, fabrication, and testing of a booster stage engine, it is strategically a prudent choice to start with a low-thrust engine and build up space application cases.

A Comparative Study of Reservoir Surface Area Detection Algorithm Using SAR Image (SAR 영상을 활용한 저수지 수표면적 탐지 알고리즘 비교 연구)

  • Jeong, Hagyu;Park, Jongsoo;Lee, Dalgeun;Lee, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1777-1788
    • /
    • 2022
  • The reservoir is a major water supply source in the domestic agricultural environment, and the monitoring of water storage of reservoirs is important for the utilization and management of agricultural water resource. Remote sensing via satellite imagery can be an effective method for regular monitoring of widely distributed objects such as reservoirs, and in this study, image classification and image segmentation algorithms are applied to Sentinel-1 Synthetic Aperture Radar (SAR) imagery for water body detection in 53 reservoirs in South Korea. Six algorithms are used: Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed (WS), and Chan-Vese (CV), and the results of water body detection are evaluated with in-situ images taken by drones. The correlations between the in-situ water surface area and detected water surface area from each algorithm are NN 0.9941, SVM 0.9942, RF 0.9940, Otsu 0.9922, WS 0.9709, and CV 0.9736, and the larger the scale of reservoir, the higher the linear correlation was. WS showed low recall due to the undetected water bodies, and NN, SVM, and RF showed low precision due to over-detection. For water body detection through SAR imagery, we found that aquatic plants and artificial structures can be the error factors causing undetection of water body.

An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation (달 지상환경 모사를 위한 지반 진공화 및 달먼지 거동에 대한 실험적 연구)

  • Chung, Taeil;Ahn, Hosang;Yoo, Yongho;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.327-333
    • /
    • 2019
  • For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.

The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering (한국형 인공월면토(KLS-1) 마이크로파 소결에 미치는 영향인자에 관한 실험적 연구)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Shin, Hyu-Soung;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.5-17
    • /
    • 2021
  • The Moon has been an attractive planet as an outpost for deep space exploration since He-3 and water ice which can be used as energy resources were discovered. In-Situ Resource Utilization (ISRU) construction material fabrication method is required for sustainable space planet exploration. In this paper, the possibility of microwave sintering technology for construction material fabrication was evaluated using lunar regolith that can be easily collected from the Moon surface. Experimental assessment of the influence factors on microwave sintering was conducted using a hybrid sintering system for efficient processing. The heat distribution in the furnace was observed using thermal paper that is coated with a material formulated to change color when exposed to heat. Based on this result, sintered cylindrical KLS-1s with a diameter of 1 cm and a height of 2 cm were fabricated. Densities were measured for the sintered KLS-1s under rotating turntable conditions that have an effect of microwave dispersion. The more dielectrics were arranged, the more microwaves were dispersed reducing the heat concentration, and thus a uniformity of sintered KLS-1s was enhanced.

Investigation of Technical Requirements for a Protective Shield with Lunar Regolith for Human Habitat (월면토를 이용한 달 유인 우주기지 보호층의 기술적 요구조건에 관한 연구)

  • Lee, Jangguen ;Gong, Zheng;Jin, Hyunwoo ;Ryu, Byung Hyun;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.49-55
    • /
    • 2023
  • The discovery of lunar ice in the lunar polar region has fueled international interest in in situ resource utilization (ISRU) and the construction of lunar habitats. Unlike Earth's atmosphere, the Moon presents unique challenges, including frequent meteoroid impacts, direct exposure to space radiation, and extreme temperature variations. To safeguard lunar habitats from these threats, the construction of a protective shield is essential. Lunar regolith, as a construction material, offers distinct advantages, reducing transportation costs and ensuring a sustainable supply of raw materials. Moreover, it streamlines manufacturing, integration schedules, and enables easy repairs and modifications without Earth resupply. Adjusting the shield's thickness within the habitat's structural limits remains feasible as lunar conditions evolve. Although extensive research on protective shields using lunar regolith has been conducted, unresolved conflicts persist regarding shield requirements. This study conducts a comprehensive analysis of the primary lunar threats and suggests a minimum shield thickness of 2 m using lunar regolith. Furthermore, it outlines the necessary technology for the rapid construction of such protective shields.