• Title/Summary/Keyword: In-situ mixing

Search Result 129, Processing Time 0.025 seconds

Characterization of TiB2 Particle Reinforced Cu Matrix Composites Processed by Turbulent In-situ Mixing (난류용탕 in-situ 합성법에 의해 제조된 TiB2 입자강화 Cu 기지 복합재료의 특성)

  • Kim J. H.;Yun J. H.;Lee G. G.;Choi I. D.;Park Y. H.;Cho K. M.;Park I. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.809-813
    • /
    • 2005
  • A copper matrix composite reinforced by turbulent in-situ $TiB_2$ nanoparticle was Prepared by reactions of boron ana titanium. The microstructure, mechanical and electrical properties of the as-drawn composites were investigated. The results showed that the formed $TiB_2$ particles, which had a size of about from 50 to 200nm, exhibited a homogeneous dispersion in the copper matrix. Due to their reinforcement, the hardness and Young's modulus of $Cu-TiB_2$ composites were enhanced with increasing the cooling rate. Moreover, the electrical conductivity of the composites were improved with increasing the cooling rate.

Fe-TiC Composite Powders Fabricated by Planetary Ball Mill Processing (유성볼밀공정으로 제조된 Fe-TiC 복합재료 분말)

  • Lee, B.H.;Ahn, K.B.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, B.K.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2015
  • Fe-TiC composite powders were fabricated by planetary ball mill processing. Two kinds of powder mixtures were prepared from the starting materials of (a) (Fe, TiC) powders and (b) (Fe, $TiH_2$, Carbon) powders, respectively. Milling speed (300, 500 and 700 rpm) and time (1, 2, and 3 h) were varied. For (Fe, $TiH_2$, Carbon) powders, an in situ reaction synthesis of TiC after the planetary ball mill processing was added to obtain a homogeneous distribution of ultrafine TiC particulates in Fe matrix. Powder characteristics such as particle size, size distribution, shape, and mixing homogeneity were investigated.

The Optimization of Human Sperm Decondensation Procedure for Fluorescence in Situ Hybridization (Fluorescence in Situ Hybridization 시행을 위한 인간정자 탈응축법의 적정화)

  • Pang, Myung-Geol
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.369-375
    • /
    • 1997
  • Studies were conducted to determine the efficiency of decondensation protocols. Sperm obtained from seven normal donors was immediately washed after liquefaction and then decondensed using the method of West et al. (1989) and my original protocol. My optimized protocol entailed mixing 1 ml aliquots of semen with 4 ml phosphate buffered saline (PBS). Following centrifugation, pellets were resuspended in 1 ml PBS containing 6 mM EDTA. After centrifugation, pellets were resuspended in 1 ml PBS containing 2 mM dithiothreitol at $37^{\circ}C$ for 45 min. Following mixing with 2 ml PBS and centrifugation, pellets were resuspended by vortexing. While vortexing, 5 ml of fixative were gently added. Slide preparation was accomplished using the smear method and it was stored at $4^{\circ}C$. When comparing these protocols, the degree of sperm decondensation and head swelling was monitored by measuring nuclear length, area, perimeter, and degree of roundness using FISH analysis software. Apparent copy number for chromosome 1 and, separately, for the sex chromosomes was determined by FISH using satellite DNA probes for loci DIZ1, DXZ1 and DYZ3. Sperm treated by my decondensation protocol showed significant increases (p<0.05) in length, area, perimeter, and degree of roundness. There was a significant decrease (p<0.05) in the frequency of nuclei displaying no signal but no change in the frequency of nuclei with two signals in samples decondensed by my protocol. My data suggested that decondensation using my original protocol may lower the frequency of cells with spurious "nullisomy" due to hybridization failure without inducing spurious "disomy" resulting from increased distances between split signals.

  • PDF

Superconducting properties of MgB2 superconductors in-situ processed using various boron powder mixtures

  • Kang, M.O.;Joo, J.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.45-50
    • /
    • 2021
  • In this study, the effect of the size of B powder on the critical current density (Jc) of MgB2 prepared by an in situ reaction process was investigated. Various combinations of B powders were made using a micron B, ball-milled B and nano B powders. Micron B powder was reduced by ball milling and the milled B powder was mixed with the micron B or nano B powder. The mixing ratios of the milled B and micron or nano B were 100:0, 50:50 and 0:100. Non-milled micron B powder was also mixed with nano powder in the same ratios. Pellets of (2B+Mg) prepared with various B mixing ratios were heat-treated to form MgB2. Tc of MgB2 decreased slightly when the milled B was used, whereas the Jc of MgB2 increased with increasing amount of the milled B or the nano powder. The used of the milled B and nano B power promoted the formation MgB2 during heat treatment. In addition to the enhanced formation of MgB2, the use of the powders reduced the grain size of MgB2. The use of the milled and nano B powder increased the Jc of MgB2. The highest Jc was achieved when 100% nano B powder was used. The Jc enhancement is attributed to the high volume fraction of the superconducting phase (MgB2) and the large grain boundaries, which induces the flux pinning at the magnetic fields.

Application of Optimum Multiparameter Analysis on Seawater Mixing in the South Sea of Korea Using Ra Isotopes

  • Lee Tongsup;Yang Han-Soeb;Kim Hyang-Bae
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.143-150
    • /
    • 2000
  • Assuming that summer surface waters in the South Sea (northern East China Sea) are formed mostly by a mixing of three source water (Changjiang Discharge Water; Kuroshio Water and Yellow Sea Surface Water) we apply optimum multiparameter (OMP) analysis to calculate the mixing ratio of each source water to a given surface water. Since OMP requires more parameters than the number of water types (three in this study), we utilize two radium isotopes of dissolved $^{226}Ra\;and\;^{228}Ra$ along with temperature and salinity. Parameter values of each source water are deduced from in situ and historical data. Results with three source of waters on the surface waters are quite promising with less than $1\%$ of unanswered portions. Results not only reproduce the measured temperature and salinity faithfully but also discern the water masses of similar T and S according to their source water mixing. Extending OMP analysis to a whole water column obviously requires more parameters because more source waters are involved in the water mass formation. Original OMP routine utilized dissolved oxygen and nutrients. However, they seem to be perturbed too much by biological activities in the case of shallow waters. We discussed the use of other potential parameters. Also the benefit of parameter substitution is briefly introduced for the future OMP application on shallow waters.

  • PDF

Application to Breakwater Foundation by DCM (DCM 공법에 의한 방파제 기초 적용사례)

  • Gu, Im-Sik;Kim, Young-Sang;Jeong, Gyeong-Hwan;Choi, Jeong-Uk;Shin, Min-Sik;Kim, Jae-Hyon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.372-382
    • /
    • 2006
  • The DCM(Deep Cement Mixing) Method was introduced domestically in 1985 and has been applied widely to improve stability, increase bearing capacity and reduce settlement of the structure. It has been only performed by the combined equipment to improve the soft ground in coastal areas. But it has qualify-control problems such as interference of waves and improving depth, etc. Therefore DCM Barge of specialist equipment, named by Dong Ji Ho, was equipped with three mixing shafts with four rod and installed GPS system In itself, had been developed in 2005 for the purpose of solving the above problems. This paper represents about Dong Ji Ho's qualify-control system as well as it's first domestic application to in-situ trial test and the original design of the Ulsan breakwater site.

  • PDF

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles (활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리)

  • LEE, Hyeonmin;JUNG, Jihyeun;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.

INFRARED ABSORPTION MEASUREMENT DURING LOW-TEMPERATURE PECVD OF SILICON-OXIDE FILMS

  • Inoue, Yasushi;Sugimura, Hiroyuki;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • In situ measurement of infrared absorption spectra has been performed during low-temperature plasma-enhanced chemical vapor depositiion of silicon-oxide films using tetramethoxysilane as a silicon source. Several absorption bands due to the reactant molecules are clearly observed before deposition. In the plasma, these bands completely disappear at any oxygen mixing ratio. This result shows that most of the tetramethoxysilane molecules are dissociated in the rf plasma, even C-H bonds. Existence of Si-H bonds in vapor phase and/or on the film surface during deposition has been found by infrared diagnostics. We observed both a decrease in Si-OH absorption and an increase in Si-O-Si after plasma off, which means the dehydration condensation reaction continues after deposition. The rate of this reaction is much slower than the deposition ratio of the films.

  • PDF

A Study on the Estimation of Compressive Strength of Ready-mixed Concrete On the basis of Mix-Design (콘크리트 배합표에 의한 현장 콘크리트의 압축강도 추정에 관한 연구)

  • 조홍범;윤상천;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.257-262
    • /
    • 2001
  • There are only a few tests to ensure concrete quality before placing in domestic situ; One is slump test for workability, the other is air content test for durability, the concrete compressive strength which is one of important factors to influence on concrete Quality has been tested after 28 days placing. Methods on early judgement of concrete strength have been introduced for concrete quality management, but such methods are time consuming, expensive, and required special expertise. Therefore, these have difficulty in situ application for concrete management. This study aimed at reviewing application of estimated equation of compressive strength as means for ready-mixed concrete, making an estimated equation which enables to estimate 28 days compressive strength by using regression formula analysis on basis of mixing designs of ready mixed concrete and results of compressive strength.

  • PDF