• Title/Summary/Keyword: In-rack Sprinkler

Search Result 11, Processing Time 0.037 seconds

Experimental Study on the Suppression Performance of Sprinkler Systems in Rack-type Warehouses (랙크식 물류창고의 스프링클러설비 소화성능에 관한 실험연구)

  • Choi, Ki-Ok;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.44-50
    • /
    • 2019
  • In rack-type warehouses, it is difficult to extinguish fires effectively using sprinkler systems because high fire load commodities are stacked vertically and densely. In this study, an actual size rack structure was constructed and the effectiveness of the fire extinguished by the sprinkler system was confirmed through fire tests according to the type and arrangement of the sprinkler head in the rack structure. Through this study, to effectively suppress fires in rack-type warehouses, it is necessary to use sprinkler heads with a volume of more than 115 LPM and sprinkler heads need to be installed at the diagonal corner positions of the commodities of each rack.

Effect of Rack Compartment using Barriers on Reducing the Fire Spread (차단막에 의한 랙크 구획화가 화재확산 저감에 미치는 영향)

  • Cho, Gyu-Hwan;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.66-75
    • /
    • 2018
  • A barrier installed within a rack plays a significant role in delaying the initial spread of fire but it can be an obstacle to a ceiling-type sprinkler installed for extinguishing fires and for supplying fire extinguishing water. An in-rack sprinkler and a barrier can be applied at the same time, but a study on a barrier's ability to delay fire spread or its effect on the in-rack sprinkler is needed. Accordingly, this study examined the effect of a barrier on the delay of fire spread and the in-rack sprinkler according to installation conditions through the reduced scale fire test. As a result, the delay in fire spread increased more than four times when a horizontal barrier and a vertical barrier were installed at the same time. The temperature was also increased two to three times with the compartment, resulting in the early operation of the in-rack sprinkler.

Spray Characteristics of In-Rack Sprinkler Heads (인랙스프링클러 헤드의 살수 특성)

  • Kim, Jong Hoon;Joung, Woo In;Myoung, Sang Youb;Jeong, Keesin;Kim, Woon Hyung
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.54-62
    • /
    • 2017
  • The aim of this study is to find out the water spray features of in-rack sprinklers for rack storage. This study conducted cold water flow test, measurement of spray angle and densities by angles for sprinkler head manufactured by a Korean company and a U.S. company. Korean sprinkler head had a wide angle of water spary. The water spray angle of a U.S. sprinkler head was narrow compared to the Korean sprinkler. In comparison of the Korean head with U.S. head of the same K80, the Korean head can send water to parts that are difficult to directly spray, but the spraying density by angle was low. U.S. head can send more water than Korean head at a narrow angle. In conclusion, for flammable materials placed in two or more rows in a rack storage, a zigzag arrangement with face sprinklers will be effective.

Developments in Fire Sprinkler Technology

  • Rice, Douglas
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.606-609
    • /
    • 1997
  • Technology in fire sprinklers has exploded. There is more private fire sprinkler research now than ever before. New technology in fire sprinklers has tested the existing standard and found that it was wrong in some cases, it has provided new sprinklers that control fire better while reducing the cost of the overall system. This expansion of the types and applications of fire sprinklers has created a great need for education for the Authorities Having Jurisdiction and the Engineer as they must be able to make informed decisions regarding this new technology. Significant research has been done at Factory Mutual Research Corporation and Underwriters Laboratory in the United States. Full scale fire testing is done to prove any new technology did not lower the level of protection of existing fire sprinkler system installations. In each and every case, the existing level of fire protection was the baseline against which the new sprinklers were tested. This level can not be lowered for the test to be considered a success. This is intended to be an overview of the developments in fire sprinklers. Although extensive detail is not included, the overall aspects of these developments can be discussed. The research that will be covered will include the following general subjects: high piled and rack storage sprinkler protection without in-rack sprinklers, extended coverage and quick response sprinklers for ordinary and light hazard occupancies, as well as special sprinklers and their applications.

  • PDF

An Experimental Study on the Application of Horizontal Barrier and In-Rack Sprinklers to Prevent Vertical Spread of Rack-type Warehouse Fires (랙크식 창고 화재의 수직 확산 방지를 위한 수평차단막과 In-Rack 스프링클러 적용에 관한 실험연구)

  • Park, Moon-Woo;Hong, Sung-Ho;Choi, Ki-Ok;Choi, Don-Mook;Kim, Soo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.15-21
    • /
    • 2019
  • A rack-type warehouse has the advantage of storing a large amount in a small area by loading goods vertically. But in terms of fire risk, the fire load is very high, which can cause massive damage in the event of a fire. In the United States, research has been actively conducted to minimize the spread of vertical fires, and relevant standards have been established and operated. In Korea, research and related standards are insufficient to prevent the vertical spread of rack-type warehouse fires. In this study, an experimental study was conducted to prevent the vertical spread of a rack-type warehouse fire using a horizontal barrier and in-rack sprinklers. As a result of the test, the horizontal barrier considering the continuous flame prevented the vertical spread of the flame for a certain time. However, the horizontal barrier with continuous flame did not show the effect of preventing continuous flame. The combination of the horizontal barrier and the in-rack sprinkler prevented the vertical spread of fire effectively. In addition, the heat collecting effect through the horizontal barrier was shown and helped the early operation of the in-rack sprinklers.

Application of Horizontal Barrier on a Rack to Reduce Fire Spread (화재확산 저감을 위한 랙크 내 수평차단막 적용에 관한 연구)

  • Yeo, In-Hwan;Cho, Gyu-Hwan
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.71-79
    • /
    • 2017
  • A rack warehouse with a vertically loading type and high loading density has severe risks and damage during its fire. In this regard, US and Japan strive to minimize the fire spread by applying in-rack sprinkler, horizontal barriers, etc. corresponding to their own rack warehouse but there is no study and policy in Korea. Therefore, a model scale fire test was carried out targeting the standard rack incorporating the national rack warehouse in order to check fire characteristics in ignition points and installation distances of horizontal barriers in this study. As a result of the test, vertical fire spread of about 30% was inhibited by narrowing its installation distance from 2-layer to 1-layer in an ignition condition of the flue space. In addition, as a result of the measurement of the temperature in the upper and lower parts of the horizontal barrier, the temperature distribution showed about 2~4 higher in a condition with an installation of the barrier than that in the condition without the barrier. Consequently, it is likely that the horizontal barrier will help the initial operation of in-rack sprinkler.

An Improvement of Fire Safety Code for Rack-Type Warehouse in Korea (국내 랙크식 창고의 방화관련 규정 개선에 관한 연구)

  • Kim, Woon-Hyung;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.69-75
    • /
    • 2014
  • Recently Amore pacific rack-type warehouse fire broke out and argue an urgent improvement of fire protection design code including automatic sprinkler and detection design. Various type of commodities have their unique fire characteristics from fire spread rate and heat lease rate and fire hazard depends on storage height, rack arrangement, aisle width, fire load etc. With increasing ceiling height for more storage space prevent effective water spray of sprinkler head, also delays detection time causes failure of early suppression. To achieve fire protection code performance of this occupancy, Major code articles relating to a classification of commodity, sprinkler system installation, detection and fire fighting are reviewed and suggested based on fire case analysis, code review between country and field survey.

A Development and Performance Experiment on In-rack Sprinkler Head for Rack Type Warehouse (적층식 대형창고 스프링클러헤드 개발 및 성능실험)

  • Kim, Woon-Hyung;Lee, Jun;Hong, Seong-Ho;Kim, Jong-Hoon;Yang, So-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.214-222
    • /
    • 2019
  • Purpose: The purpose of this study is to develop a sprinkler head that can be controlled and initial suppressed by installing it in a rack-type warehouse. Method: Considering the spray radius and spray pattern, various deflectors were designed, and the spray angle, discharge characteristics and protection performance test was conducted, and these results were compared and analyzed. Results: An optimal sprinkler head was developed to protect full load, front side of a commodity with minimum water volume 115L/min. Conclusion: The developed head of K-115 and 1Bar pressure was tested with one tier storage confirming that the fire control is carried out without burning all the loadings. In addition, the vertical distance from the top of the load to the deflector shall be separated by 450mm and installed to allow sufficient discharge to the outer part of the commodity.

Design of Integrated Smart Fire Protection System for Rack Storage (랙크식 창고 통합 스마트 화재대응 시스템 설계)

  • Kim, Jong-Hoon
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.26-36
    • /
    • 2020
  • It is very difficult to suppress fire by rapid flame spread through flue space between flammable commodities on the rack when a fire occurs in the rack storage. At present, the fire protection system for rack storage in Korea has many issues, and the new fire protection system was designed and developed by it. A smart system using the sensor network and artificial intelligence was designed to detect fire very rapidly and track the location of a fire. In the very early stages, the system was constructed using vertical open sprinkler pipes, wet pipes, and solenoid valves to allow water to spray near fire locations. Based on the design results, the system was installed and tested, and the full-scale test was successfully completed.

A Field Survey of Rack-Type Warehouse for Commodity Classification System in Korea (국내 랙크식 창고 수용물품 등급분류를 위한 현장조사)

  • Kim, Woon-Hyung;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.98-105
    • /
    • 2016
  • A fire risk assessment in rack-type warehouse is typically determined based on the following factors: 1. flammability and fire loads for storage of goods, packing materials, and pallet, 2. a ceiling height of warehouse indoor spaces, and 3. height, arrangement, and spacing for storage racks. For appropriately extinguishing and protecting the fire in warehouses, therefore, it is necessary to classify combustibles considering the previously mentioned factors and to develop design Standards for sprinkler system. As the first step to apply automatic sprinkler system to domestic warehouses, this study investigated characteristics for commodity distribution and warehouse configuration using 28 warehouses in five distribution complexes located in Gyeonggi-do, South Korea. In addition, this study analyzed Standards for commodity distribution adopted in USA, Europe, and Japan. Using the field survey analysis, this study was aimed to provide baseline data to prepare for Commodity Classification Standard for warehouses in South Korea.