• Title/Summary/Keyword: In-plane vibration

Search Result 653, Processing Time 0.021 seconds

Torsional Vibration in Axisymmetric Out-of-plane Vibrations of an Annular Mindlin Plate (환상 민들린 평판의 축대칭 면외 진동에서의 비틀림 진동)

  • Kim, Chang-Boo;Lim, Jung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.13-17
    • /
    • 2010
  • This presentation examines the characteristics of torsional vibration in axisymmetric out-of-plane vibrations of an annular Mindin plate. The out-of-plane vibration of circular or annular plates have been investigated since a long years ago by many researchers. When the classical Kirchhoff plate theory neglecting the effect of transverse shear deformation is applied to a thick plate, its out-of-plane natural frequencies are much different from reality. And so, since Minlin presented a plate theory considering the effect of rotary inertia and transverse shear deformation, many researches for the out-of-plane natural vibration of circular or annular Mindin plates have been performed. But almost all researchers missed the torsional vibration due to transverse shear deformation in axisymmetric out-of-plane vibrations of the circular or annular Mindin plate. Therefore, in this presentation, we verify the existence of torsional vibration of an annular plate and present the natural frequencies of an annular plate with free outer boundary surface.

  • PDF

Observation of Strong In-plane End Vibration of a Cylindrical Shell

  • 길현권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.183-183
    • /
    • 2002
  • In this paper, the strong in-plane vibration has been experimentally observed at the end of a finite cylindrical shell. The strong in-plane vibration was generated by the evanescent wave field, which was excited along about half the length of the shell. The evanescent waves were generated due to mode conversion of elastic waves at the ends of the cylindrical shells.

Measurements of the Out-of-Plane Vibration Intensity of Coupled Plate (연성평판의 면외 진동인텐시티 측정)

  • 전진숙;길현권;이병철;김창열;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.831-835
    • /
    • 2003
  • The objective of this paper is to suggest an experimental technique to measure the out-of-plane vibration intensity of a coupled plate. In order to measure the out-of-plane vibration intensity of the plate, the frequency response technique has been implemented. In this technique, the 2-D intensity vector at a measurement point has been estimate from the frequency response functions measured at 4 points in the neighborhood of the measurement point. The experimental result has been compared with a theoretical result. It showed that the experimental technique can be effectively used to measure the out-of-plane vibration intensity of plates.

  • PDF

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

In-plane Vibration Analysis for an Axially Moving Membrane (축방향으로 움직이는 박막의 면내 진동해석)

  • 정진태;신창호;김원석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.

A Study under behavior of tensile and vibration in composite plate by ESPI method (ESPI 법에 의한 복합재 평판의 인장 및 진동 거동에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.106-111
    • /
    • 1999
  • This study discusses a non-contact optical technique electronic, electronic speckle pattern interferometry(ESPI) that is well suited for in-plane and out-of-plane deformation measurement Used as specimen which has the boundary condition of two clamped parallel edges composite material AS4/PEEK[30/-30/90]s was analyzed by ESPI to determined the characteristics of tensile and vibration. These are quantitativly compared with the result of FEM analysis. Finally the results of this study are briefly summarized as follows : (1) In the in-plane strain analysis by comparison of theoretical results with experimental results qualitatively we confirmed that measurement errors are within 3 % in case of accuracy (2) From comparison of experimental vibration modes with numerical vibration mode shapes by the FEM analysis quantitatively we confirmed that vibration mode measurement by the ESPI has high accuacy.

  • PDF

Balancer design for scroll compressors using vibration plane model (진동평면모델을 이용한 스크롤 압축기 균형추 설계)

  • Suh, Jeong-Hwan;Lee, Dong-Soo;Kim, Seung-Yup;Joh, Nam-Gyu;Lee, Hyung-Gook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.527-532
    • /
    • 2004
  • An effective balancing method for mil compressors is developed based on vibration plane model. By assuming the design range of balancer size is not large and considering only the radial axial direction rigid vibration of the mil compressors, we can find the vibration plane (V-plane) describing the vibration level of the scroll compressor depending upon balancer design specifications. By in the intersection of two minimum lines (areas) obtained from the couple of V-Planes we can find the design lesion to minimize vibration level of the compressor. The full design process is described by using an illustrative example with upper and lower balancer weights. Further more sensitivity analysis of parameters important for designation of size and positioning of the balancer is analyzed.

  • PDF

Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped (유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

SIMPLE MODELS TO INVESTIGATE THE EFFECT OF VELOCITY DEPENDENT FRICTION ON THE DISC BRAKE SQUEAL NOISE

  • Shin, K.;Brennan, M.J.;Joe, Y.G.;Oh, J.E.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 2004
  • This paper suggests two simple two-degree-of-freedom models to describe the dynamical interaction between the pad and the disc of a disc brake system. Separate models for in-plane and out -of-plane vibration are described. Although a brake pad and disc have many modes of vibration, the interaction between a single mode of each component is considered as this is thought to be crucial for brake noise. For both models, the pad and the disc are connected by a sliding friction interface having a velocity dependent friction coefficient. In this paper, it is shown that this friction model acts as negative damping in the system that describes the in-plane vibration, and as negative stiffness in system that describes the out-of-plane vibration. Stability analysis is performed to investigate the conditions under which the systems become unstable. The results of the stability analysis show that the damping is the most important parameter for in-plane vibration, whereas the stiffness is the most important parameter for the out-of-plane vibration.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.