• Title/Summary/Keyword: In-plane error

Search Result 527, Processing Time 0.021 seconds

Modeling of Median-plane Head-related Impulse Responses Using a Set of General Basis Functions (보편적인 기저함수를 이용한 중앙면상의 머리전달함수 모델링)

  • Hwang, Sung-Mook;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.448-457
    • /
    • 2008
  • A principal components analysis (PCA) of the median-plane head-related impulse responses (HRIRs) in the CIPIC HRTF database reveals that the individual HRIRs in the median plane can be adequately reconstructed by a linear combination of 12 orthonormal basis functions. These basis functions can be used to model arbitrary median-plane HRIRs, which are not included in the process to obtain the basis functions. Memory size can be reduced up to 5-fold depending on the number of HRIRs to be modeled. To clarify whether these basis functions can be used to model other set of arbitrary median plane HRIRs, a numerical error analysis for modeling and a series of subjective listening tests were carried out using the measured and modeled HRIRs. The results showed that the set of individual HRIRs in the median plane, which were measured in our lab using different measurement conditions, techniques, and source positions, can be modeled with reasonable accuracy. All subjects, involved in the subjective listening test, reported not only the accurate vertical perception but also the front-back discrimination with the modeled HRIRs based on 12 basis functions.

Review on Teaching of Measuring the Area of Plane Figures (평면도형의 넓이 측정 지도에 대한 고찰)

  • Kim, Jeong-Ha;Kang, Moon-Bong
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.3
    • /
    • pp.509-531
    • /
    • 2011
  • This study is to determine if teaching of measuring the area of plane figures in elementary school is successful. While they teach to measure the area of figures in elementary school, students don't measure the segment of the figure directly until now. The figures are presented with auxiliary line and numerical information. When students measure the area of such figure, they do only substitute the number and calculate it. This study found that such teaching is not successful and propose the new teaching method of measuring the plane figures.

  • PDF

Correction method for the Variation of the Image Plane Generated by Various Symmetric Error Factors of Zoom Lenses of Digital Still Cameras and Estimation of Defect Rate Due to the Correction (디지털 카메라용 줌렌즈에서 대칭성 오차요인에 의한 상면 변화의 보정과 이에 따른 불량률 예측)

  • Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin;Lee, Hyuck-Ki;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.420-429
    • /
    • 2006
  • In the zoom lens of digital still cameras with the variation of the image plane generated by various symmetric error factors such as curvature, thickness and refractive index error of each lens surface about the optic axis, we induce a theoretical condition to fix constantly the image plane by translating the compensator group of the zoom lens by using the Gaussian bracket. We confirm the validity of this condition by using three examples of general zoom lens types with 3, 4, and 5 groups, respectively. When these error factors are randomly changed within the range of tolerance according to the Monte Carlo method, we verify that the distributions of the degree of moving of the compensator are normal distributions at three zoom lens types. From capability analysis using these results, we theoretically propose the method estimating the standard deviation, that is, sigma-level, as a function of the maximum movement of the compensator.

Measurement of Flow Velocity and Flow Visualization with MR PC Image (MR PC 영상을 이용한 유체 흐름 분석)

  • Kim, S.J.;Lee, D.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF

The Analysis on the Error of Diverging Beam and Cylindrical Surface in Holographic Interferometer for Measuring out-of-plane Displacement. (면외변위 측정을 위한 홀로그래피 간섭게에서 발산빔과 원통표면에 대한 오차해석)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.128-134
    • /
    • 1997
  • Holographic interferometry is a useful whole-field nondestructive tesing method for measuring deformations and vibrations of engineering structure. In practical way most holographic interferometer uses a diverging beam, a point light source. When an oject is relatively small, the optical arrangement using a collimated light source has no difficulty technically but for a large object the collimated beam connot be applied anymore practically. In this paper we calculate the error of measured displacement from the sensi- tivity vector dominated by the geometry of optical arrangement for holographic interferometer and show the result with 2-D plots. A plane surface and a cylindrical surface were chosen as objects to be measured and the results from the cases of a diverging and a collimated beams were compared and analyzed.

  • PDF

AN EXTREMAL PROBLEM OF HOLOMORPHIC FUNCTIONS IN THE COMPLEX PLANE

  • Chung, Young-Bok;Park, Byoung-Il
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.717-727
    • /
    • 2013
  • In this paper, we study on a higher order extremal problem relating the Ahlfors map associated to the pair of a finitely connected domain in the complex plane and a point there. We show the power of the Ahlfors map with some error term which is conformally equivalent maximizes any higher order derivative of holomorphic functions at the given point in the domain.

Depth error calibration of maladjusted stereo cameras for translation of instrumented image information in dynamic objects (동영상 정보의 계측정보 전송을 위한 비선형 스테레오 카메라의 오차 보정)

  • Kim, Jong-Man;Kim, Yeong-Min;Hwang, Jong-Sun;Lim, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.109-114
    • /
    • 2003
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of intra parameter is calibrated with known points, such error can be compensated in some amount. Such error compensation effect with the calibrated pixel distance parameter is demonstrated with various experimental results.

  • PDF

Second Order Bounce Back Boundary Condition for the Latice Boltzmann Fluid Simulation

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.

  • PDF

A study on the design of a path tracker and depth controller for autonomous underwater vehicles (무인 수중운동체의 경로추적기와 심도제어기 설계 연구)

  • Yang, Seung-Yun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • In this paper, a robust path tracker and depth controller of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also designed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance.

  • PDF

NREH: Upper Extremity Rehabilitation Robot for Various Exercises and Data Collection at Home (NREH: 다양한 운동과 데이터 수집이 가능한 가정용 상지재활로봇)

  • Jun-Yong Song;Seong-Hoon Lee;Won-Kyung Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • In this paper, we introduce an upper extremity rehabilitation robot, NREH (NRC End-effector based Rehabilitation arm at Home). Through NREH, stroke survivors could continuously exercise their upper extremities at home. NREH allows a user to hold the handle of the end-effector of the robot arm. NREH is a end-effector-based robot that moves the arm on a two-dimensional plane, but the tilt angle can be adjusted to mimic a movement similar to that in a three-dimensional space. Depending on the tilting angle, it is possible to perform customized exercises that can adjust the difficulty for each user. The user can sit down facing the robot and perform exercises such as arm reaching. When the user sits 90 degrees sideways, the user can also exercise their arms on a plane parallel to the sagittal plane. NREH was designed to be as simple as possible considering its use at home. By applying error augmentation, the exercise effect can be increased, and assistance force or resistance force can be applied as needed. Using an encoder on two actuators and a force/torque sensor on the end-effector, NREH can continuously collect and analyze the user's movement data.