DOI QR코드

DOI QR Code

Modeling of Median-plane Head-related Impulse Responses Using a Set of General Basis Functions

보편적인 기저함수를 이용한 중앙면상의 머리전달함수 모델링


Abstract

A principal components analysis (PCA) of the median-plane head-related impulse responses (HRIRs) in the CIPIC HRTF database reveals that the individual HRIRs in the median plane can be adequately reconstructed by a linear combination of 12 orthonormal basis functions. These basis functions can be used to model arbitrary median-plane HRIRs, which are not included in the process to obtain the basis functions. Memory size can be reduced up to 5-fold depending on the number of HRIRs to be modeled. To clarify whether these basis functions can be used to model other set of arbitrary median plane HRIRs, a numerical error analysis for modeling and a series of subjective listening tests were carried out using the measured and modeled HRIRs. The results showed that the set of individual HRIRs in the median plane, which were measured in our lab using different measurement conditions, techniques, and source positions, can be modeled with reasonable accuracy. All subjects, involved in the subjective listening test, reported not only the accurate vertical perception but also the front-back discrimination with the modeled HRIRs based on 12 basis functions.

Keywords

References

  1. Blauert, J., 1996, Spatial Hearing, MIT Press, Cambridge, MA
  2. Brungart. D. S. and Rabinowitz, W. M., 1999, 'Auditory Localization of Nearby Sources. Head-related Transfer Functions', J. Acoust. Soc. Am., Vol. 106, pp. 1465-1479 https://doi.org/10.1121/1.427180
  3. Cheng, C. I. and Wakefield, G. H., 2001, 'Introduction to Head-related Transfer Functions (HRTFs): Representations of HRTFs in Time, Frequency, and Space', J. Audio Eng. Soc., Vol. 49, pp. 231-248
  4. Algazi, V. R., Avendano, C. and Duda, R. O., 2001a, 'Elevation Localization and Head- related Transfer Function Analysis at Low Frequencies', J. Acoust. Soc. Am., Vol. 109, pp. 1110-1122 https://doi.org/10.1121/1.1349185
  5. Gardner, M. B. and Gardner, R. S., 1973, 'Problem of Localization in the Median Plane: Effect of Pinna Cavity Occlusion', J. Acoust. Soc. Am., Vol. 53, pp. 400-408 https://doi.org/10.1121/1.1913336
  6. Hebrank, J. and Wright, D., 1974, 'Spectral Cues Used in the Localization of Sound Sources on the Median Plane', J. Acoust. Soc. Am., Vol. 56, pp. 1829-1834 https://doi.org/10.1121/1.1903520
  7. Middlebrooks, J. C. and Green, D. M., 1992, 'Observations on a Principal Components Analysis of Head-related Transfer Functions', J. Acoust. Soc. Am., Vol. 92, pp. 597-599 https://doi.org/10.1121/1.404272
  8. Raykar, V. C., Duraiswami, R. and Yegnanarayana, B., 2005, 'Extracting the Frequencies of the Pinna Spectral Notches in Measured Head Related Impulse Responses', J. Acoust. Soc. Am., Vol. 118, pp. 364-374 https://doi.org/10.1121/1.1923368
  9. Shaw, E. A. G. and Teranishi, R., 1968, 'Sound Pressure Generated in an External-ear Replica and Real Human Ears by a Nearby Point Source', J. Acoust. Soc. Am., Vol. 44, pp. 240-249 https://doi.org/10.1121/1.1911059
  10. Kim, S., Kim, K., Bae, K., Choi, S. and Park, M, 2005, 'Headphone-based Multi-channel 3D Sound Generation Using HRTF', J. IEEK-SP, Vol. 42, pp. 71-77
  11. Blommer, M. A. and Wakefield, G. H., 1997, 'Pole-zero Approximations for Head-related Transfer Functions Using a Logarithmic Error Criterion', IEEE Trans. Speech Audio Process., Vol. 5, pp. 278-287 https://doi.org/10.1109/89.568734
  12. Brown, C. P. and Duda, R. O., 1998, 'A Structural Model for Binaural Sound Synthesis', IEEE Trans. Speech Audio Process., Vol. 6, pp. 476-488 https://doi.org/10.1109/89.709673
  13. Durant, E. A. and Wakefield, G. H., 2002, 'Efficient Model Fitting Using a Genetic Algorithm: Pole-zero Approximations of HRTFs', IEEE Trans. Speech Audio Process., Vol. 10, pp. 18-27 https://doi.org/10.1109/89.979382
  14. Haneda, Y., Makino, S., Kaneda, Y. and Kitawaki, N., 1999, 'Common-acoustic-pole and Zero Modelling of Head-related Transfer Functions', IEEE Trans. Speech Audio Process., Vol. 7, pp. 188-196 https://doi.org/10.1109/89.748123
  15. Kulkarni, A. and Colburn, H. S., 2004, 'Infinite-impulse-response Models of the Head-related Transfer Function', J. Acoust. Soc. Am., Vol. 115, pp. 1714-1728 https://doi.org/10.1121/1.1650332
  16. Mackenzie, J., Huopaniemi, J. and Valimaki, V., 1997, 'Low-order Modelling of Head-related Transfer Functions Using Balanced Model Truncation', IEEE Signal Process. Letters, Vol. 4, pp. 39-41 https://doi.org/10.1109/97.554467
  17. Yim, J., Kim, C. and Kang, S., 1996, 'Lower-order ARMA Modeling of Head-related Transfer Functions for Sound-field Synthesis System', J. Acoust. Soc. Kor., Vol. 15, pp. 37-44
  18. Martens, W. L., 1987, 'Principal Components Analysis and Resynthesis of Spectral Cues to Perceived Direction', in Proceedings of International Computer Music Conference, San Francisco, CA, pp. 274-281
  19. Kistler, D. J. and Wightman, F. L., 1992, 'A Model of Head-related Transfer Functions Based on Principal Components Analysis and Minimum-phase Reconstruction', J. Acoust. Soc. Am., Vol. 91, pp. 1637-1647 https://doi.org/10.1121/1.402444
  20. Wu, Z., Chan, F. H. Y., Lam, F. K. and Chan, J. C. K., 1997, 'A Time Domain Binaural Model Based on Spatial Feature Extraction for the Head-related Transfer Function', J. Acoust. Soc. Am., Vol. 102, pp. 2211-2218 https://doi.org/10.1121/1.419597
  21. Hwang, S. and Park, Y., 2007, 'Median HRIR Customization Via Principal Components Analysis', Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 17, No. 7, pp. 638-648 https://doi.org/10.5050/KSNVN.2007.17.7.638
  22. Hwang, S. and Park, Y., 2008, 'Interpretations on Principal Components Analysis of Head-related Impulse Responses in the Median Plane', J. Acoust. Soc. Am., Vol. 123, pp. EL65-71 https://doi.org/10.1121/1.2884094
  23. Algazi, V. R., Duda, R. O., Thompson, D. M. and Avendano, C., 2001b, 'The CIPIC HRTF Database', in Proceedings of the 2001 IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, pp. 99-102
  24. Moller, H., 1992, 'Fundamentals of Binaural Technology', Applied Acoustics, Vol. 36, pp. 171-218 https://doi.org/10.1016/0003-682X(92)90046-U
  25. Moller, H., Hammershoi, D., Jensen, C. B. and Sorensen, M. F., 1995a, 'Transfer Characteristics of Headphones Measured on Human Ears', J. Audio Eng. Soc., Vol. 43, pp. 203-217
  26. Moller, H., Jensen, C. B., Hammershoi, D. and Sorensen, M. F., 1995b, 'Design Criteria for Headphones', J. Audio Eng. Soc., Vol. 43, pp. 218-232
  27. Kulkarni, A. and Colburn, H. S., 2000, 'Variability in the Characterization of the Headphone Transfer-function', J. Acoust. Soc. Am., Vol. 107, pp. 1071-1074 https://doi.org/10.1121/1.428571
  28. Morimoto, M., 2001, 'The Contribution of Two Ears to the Perception of Vertical Angle in Sagittal Planes', J. Acoust. Soc. Am., Vol. 109, pp. 1596-1603 https://doi.org/10.1121/1.1352084
  29. Iida, K., Itoh, M., Itagaki, A. and Morimoto, M., 2007, 'Median Plane Localization Using a Parametric Model of the Head-related Transfer Function Based on Spectral Cues', Applied Acoustics, Vol. 68, pp. 835-850 https://doi.org/10.1016/j.apacoust.2006.07.016
  30. Morimoto, M., Iida, K. and Itoh, M., 2003, 'Upper Hemisphere Sound Localization Using Head-related Transfer Functions in the Median Plane and Interaural Differences,' Acoustical Sci. Technol., Vol. 24, pp. 267-275 https://doi.org/10.1250/ast.24.267