• Title/Summary/Keyword: In-plane Size Effect

Search Result 214, Processing Time 0.03 seconds

The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)

  • Shin, Hye Min;Park, Jun Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

Thickness dependent dielectric properties of $BaTiO_3$/Sr$TiO_3$ Nano-structured artificial lattices (나노 구조로 된 $BaTiO_3$/Sr$TiO_3$ 산화물 인공격자의 두께 의존적인 유전특성)

  • 김주호;김이준;정동근;김인우;제정호;이재찬
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.56-56
    • /
    • 2003
  • BaTiO$_3$, SrTiO$_3$단일막과 BaTiO$_3$ (BTO)/SrTiO$_3$ (STO) 산화물 인공격자를 pulsed laser deposition (PLD) 법에 의해서 100 nm 두께의 (La,Sr)CoO3 (LSCO) 산화물 전극이 코핑된 MgO 단결정 기판 위에 증착시켰다. 이러한 기판위에서 2 unit cell의 적층 두께를 갖는 BTO/STO 초격자 (=BTO2/STO2)를 100~5 nm까지 변화시켰다. 또한 BTO와 STO 단일막도 같은 두께로 변화시켰다. 이러한 두께 범위에서 BTO, STO 단일막과 초격자의 격자변형에 따른 유전특성을 살펴 보았다. 두께 변화에 따른 단일막과 초격자의 구조 분석은 포항 방사광 가속기의 x-ray 회절에 의해서 이루어졌다. 다양한 두께를 갖는 BTO2/STO2 초격자에서 BTO와 STO 충은 in-plane 방향으로 격자정합을 유지하면서 변형되었다. 두께가 얇아지면서 하부 LSCO영향으로 BTO, STO의 n-plane 격자상수는 LSCO 격자상수 쪽으로 접근하였다. Out-of-plane 방향의 BTO 격자상수는 두께가 얇아지면서 증가하였고 반면에 STO 격자상수는 감소하였다. STO와 BTO 단일막의 격자변형은 두께가 얇아지면서 in-plane 방향으로 압축응력으로 인해 증가하였다. 그러나, 격자부정합도가 큰 BTO격자에서 더 많이 변형되었다. 또한 초격자에서 BTO격자가 BTO 단일막보다 더 많이 변형되었는데 초격자에서는 BTO, STO 두 층의 발달된 변형뿐만 아니라 하부 LSCO/MgO 기판의 영향을 함께 받고 있기 때문이다. 초격자와 단일막의 유전상수를 살펴보면은 두께가 감소하면서 유전상수가 감소하는 size effect을 보이고 있다. 하지만 초격자에서의 유전상수가 단일막보다 우수한 유전특성을 보이고 있다. 이러한 결과로 볼 때 격자변형이 size effect 영향을 끼치는 중요한 요소임을 확인하였다.

  • PDF

The size and shape optimization of plane trusses using the multi-levels method (다단계 분할기법에 의한 평면트러스의 단면치수 및 형상 최적화)

  • Pyeon, Hae-Wan;Oh, Kyu-Rak;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.515-525
    • /
    • 2000
  • The purpose of this paper was to develop size & shape optimization programming algorithm of plane trusses. The optimum techniques applied in this study were extended penalty method of Sequential Unconstrained Minimization Techniques(SUMT) and direct search method with multi-variables proposed by Hooke & Jeeves. Upper mentioned two methods were used iteratively at each level of size and shape optimization routines. The design variables of size optimization were circular steel tube(structural member) diameter and thickness, those of shape optimization were joint coordinates, and the objective function was represented as total weight of truss. During the optimum design, two level procedures of size and shape optimization were interacted iteratively until the final optimum values were attained. At the previous studies about shape optimization of truss, the member sectional areas and coordinates were applied as design variables. So that they could not apply the buckling effect of compression member. In this paper, actual sizes of member and nodal coordinates are used as design variables to consider the buckling effect of compression member properly.

  • PDF

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Nazemnezhad, Reza;Rabiei, Mohaddese;Shafa'at, Pouyan;Eshaghi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.535-547
    • /
    • 2021
  • This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

An Interfacial Crack Model with Inclined Strip Plastic Zones under Mode III Load (모우드 III 하중 하에서 경사진 띠모양의 소성역을 가정한 계면균열 모델)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.243-251
    • /
    • 1989
  • Assuming plastic zones spreading out on each slip plane of the two materials under out-of-plane shear loading, the size of each plastic zone is computed. The effect of the different frictional shear stresses in the two materials on the size of each plastic zone and the relative displacement at the crack tip are investigated. The relation between the J-integral in this model and the relative displacement at the crack tip is also obtained.

A receding contact problem of a layer resting on a half plane

  • Karabulut, Pembe Merve;Adiyaman, Gokhan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • In this paper, a receding contact problem for an elastic layer resting on a half plane is considered. The layer is pressed by two rectangular stamps placed symmetrically. It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the effect of body forces is neglected. Firstly, the problem is solved analytically based on theory of elasticity. In this solution, the problem is reduced into a system of singular integral equations in which half contact length and contact pressures are unknowns using boundary conditions and integral transform techniques. This system is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact length and the contact pressures are calculated under various stamp size, stamp position and material properties using both solutions. The analytic results are verified by comparison with finite element results.

Evaluation of Fracture Toughness by J-A$_2$ Method Considering Size Effect (시편크기의 영향을 고려한 J-A$_2$ 방법에 의한 파괴인성 평가)

  • 이정윤;김영종;김용환;김재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.153-163
    • /
    • 2000
  • The size effect on fracture toughness was investigated by introducing $J-A_2$ theory. For this application,small size specimens were chosen to establish $J-A_2$ assessment curve with FEM analysis. Two-dimensional FEM analysis was conducted with plane strain model using ABAQUS by domain integral method to calculate both crack tip stress and fracture toughness which were used to establish $J-A_2$ curve. The assessment curve predicted the fracture toughness of large specimens very well when compared to the test values. The results showed good prediction for deep crack specimen, though there were acceptable deviations in shallow cracked specimens, presumably caused by constraint effect. When the curve applied to reactor vessel in order to predict end of life fracture toughness with assumption of on-power pressure test condition, it provided the reasonable pressure compared to the existing design value. Better predictions would be possible if more test data were available.

  • PDF

Effect of Change of Numerical Parameters on Outflow Characteristics in the Linear Muskingum-Cunge Method (선형 Muskingum-Cunge 법에서의 수치적 인자의 변화가 유출특성에 미치는 영향)

  • 김진수
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.139-150
    • /
    • 1996
  • This paper presents the effect of numerical parameters, such as grid size and grid ratio, on the outflow hydrograph of a unit-width plane in the linear Muskingum-Cunge method. The numerical results depend on Courant number C and cell Reynolds number D, two physically and numerically meaningful parameters. As C approache 1 and D increases, the numerical dispersion-relating oscillations are difficult to occur. The numerical oscillations occur in the front of a propagating wave for C < 1, while smaller oscillations occur behind the wave for C > 1 due to the numerical diffusion effect. For a plane with a small value of characteristic reach length L (e.g., a steep plane), the numerical solution of the Muskingum-Cunge method is similar to that of the kinematic wave method, which shows no wave attenuation. However, for a plane with a large value of L (e.g., a mild plane), the Muskingum-Cunge method leads to the diffusion waves which are essentially independent of the Courant number. Accordingly, the Muskingum-Cunge method will be suited for the routing of the catchment with relatively mild slopes.

  • PDF