• 제목/요약/키워드: In-plane Bending

검색결과 488건 처리시간 0.024초

압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석 (Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis)

  • 오창식;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.505-511
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions fur pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석 (Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis)

  • 오창식;김윤재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

  • PDF

Analytical solutions for buckling of simply supported rectangular plates due to non-linearly distributed in-plane bending stresses

  • Jana, Prasun;Bhaskar, K.
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.151-162
    • /
    • 2007
  • Rigorous analytical solutions are obtained for the plane stress problem of a rectangular plate subjected to non-linearly distributed bending loads on two opposite edges. They are then used in a Galerkin type solution to obtain the corresponding convergent buckling loads. It is shown that the critical bending moment depends significantly on the actual edge load distribution and further the number of nodal lines of the buckled configuration can also be different from that corresponding to a linear antisymmetric distribution of the bending stresses. Results are tabulated for future use while judging approximate numerical solutions.

Experimental investigation of multi-layered laminated glass beams under in-plane bending

  • Huang, Xiaokun;Liu, Qiang;Liu, Gang;Zhou, Zhen;Li, Gang
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.781-794
    • /
    • 2016
  • Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

내압과 굽힘하중을 받는 가스배관의 변형특성에 관한 연구 (A Study on the Deformation Characteristics of Gas Pipeline under Internal Pressure and In-Plane Bending Load)

  • 장윤찬;김익중;김철만;전법규;장성진;김영표
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.50-57
    • /
    • 2019
  • This paper investigates deformation characteristics of gas pipeline using the in-plane bending experiment and finite element analysis of a pipe bend. The effect of the bending angle and internal pressure on the deformation characteristics is analyzed. The pipe bend used in this study is API 5L X65 (out diameter: 20 inch) material with the thickness of 11.9 mm. The maximum load, displacement at maximum load, angle and local strain of 90° pipe bend are obtained from the in-plane bending experiment. Comparison between FE results and experimental data shows overall good agreements. In addition, the deformation characteristics of 22.5° and 45° pipe bend are calculated using the finite element analysis. As a result, the effect of the bend angle on the deformation characteristics is discussed.

OPB/IPB를 고려한 계류체인의 비선형 수치해석 (Nonlinear Finite Element Analysis for Mooring Chain Considering OPB/IPB)

  • 김민석;김유일
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.299-307
    • /
    • 2017
  • The design of the mooring line to maintain the position of an offshore structure in rough marine environments is recognized as a very important consideration. Conventional fatigue evaluation of a mooring line was performed by considering the tensile force acting on the mooring line, but the mooring line broke after 238 days in the girassol area even though the expected fatigue life was expected to be longer. The causes of this event are known to be due to OPB/IPB (out-of-plane bending/in-plane bending) caused by chain link friction due to the excessive tensile strength of the mooring line. In this study, three models with different boundary conditions were proposed for fatigue analysis of a mooring line considering OPB/IPB. Interlink stiffness was calculated by nonlinear structure analysis and a stress concentration factor was derived. In addition, the sensitivity of interlink stiffness according to the magnitude of tensile force, large deformation effect, and coefficient of friction was analyzed, and the effect of critical elastic slip and bending moment calculation position on interlink stiffness was confirmed.

Prediction of Bending Fatigue Life of Cracked Out-of-Plane Gusset Joint Repaired by CFRP Plates

  • Matsumoto, Risa;Komoto, Takafumi;Ishikawa, Toshiyuki;Hattori, Atsushi;Kawano, Hirotaka
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1284-1296
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP), plates bonding repair method is one of the simple repair methods for cracked steel structures. In this study, the influence of width of CFRP plates on bending fatigue life of out-of-plane gusset joint strengthened with CFRP plates was investigated from the experimental and numerical point of view. In the bending fatigue test of cracked out-of-plane gusset joint strengthened with CFRP plates, the effect of width of CFRP plates on crack growth life was clarified experimentally. Namely, it was revealed that the crack growth life becomes larger with increasing the width of CFRP plates. In the numerical approach, the stress intensity factor (SIF) at the surface point of a semi-elliptical surface crack was estimated based on the linear fracture mechanics. Furthermore, the extended fatigue life of cracked out-of-plane gusset joint strengthened with CFRP plates was evaluated by using the estimated SIF at the surface point and the empirical formula of the aspect ratio of semi-elliptical crack. As the results of numerical analysis, the estimated fatigue life of the specimen strengthened with CFRP plates showed the good agreement with the test results.

굽힘 효과를 고려한 자동차 패널 성형 공정의 2차원 유한 요소 해석 (2-Dimensional Finite Element Analysis of Forming Processes of Automotive Panels Considering Bending Effects)

  • 김준보;금영탁
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.27-38
    • /
    • 1996
  • A two-dimensional FEM program, which considers bending effects in the membrane fromulation, was developed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die of automotive panels. For the evaluation of bending effects with membrane elements, the bending equivalent forces and stiffnesses are calculated from the bending moment computed using the changes in curvature of the formed shape of two membrane ones. The curves depicted with 3 nodes are described by a circle, a quadratic equation, and a cubic equation, respectively, and in the simulation of the stretch/draw sections of an automotive inner panel, three different description results are compared each other. Also, the bending results are compared with membrane results and measurements in order to verify the validity of the developed program.

  • PDF

GEOMETRY ON EXOTIC HYPERBOLIC SPACES

  • Kim, In-Kang
    • 대한수학회지
    • /
    • 제36권3호
    • /
    • pp.621-631
    • /
    • 1999
  • In this paper we briefly describe the geometry of the Cayley hyperbolic plane and we show that every uniform lattice in quaternionic space cannot be deformed in the Cayley hyperbolic 2-plane. We also describe the nongeometric bending deformation by developing the theory of the Cartan angular invariant for quaternionic hyperbolic space.

  • PDF

축력과 면내 및 면외 휨모멘트를 받는 철근콘크리트 벽체 (RC Wall under Axial Force and Biaxial Bending Moments)

  • 박홍근
    • 콘크리트학회지
    • /
    • 제10권4호
    • /
    • pp.113-124
    • /
    • 1998
  • 축력과 면내 및 면외의 두방향 휨모멘트를 받는 철근콘크리트 벽체에 대한 비선형 해석연구를 수행하였으며 , 해석결과를 분석하여 벽체의 강도산정법을 유도하였다. 비선형 해석연구를 위하여 철근콘크리트 벽체에 대한 재료 및 기하학적 비선형 해석을 수행할 수 있는 유한요소 해석방법을 개발하였다. 철근콘크리트의 재료모델로서 소성이론과 파괴모델의 통합모델을 사용하였다. 철근콘크리트 벽체에 대한 해석결과를 토대로 단면의 응력분포를 이상화하였으며, 이를 이용하여 새로운 강도산정법을 개발하였다. 이 방법에 따르면, 면외 휨모멘트에 의하여 단위길이의 벽체가 지지할 수 있는 축력이 결정되며, 이 허용 단위 축력에 따라서 총 축력과 면내 휨모멘트의 상호관계곡선이 결정된다. 면외 휨모멘트가 증가할수록 축력과 면내 휨모멘트의 상호관계곡선이 축소되며 이는 벽체 강도의 감소를 가리킨다. 이 새로운 방법을 , 휨변형후에도 단면이 평면으로 유지된다는 가정을 사용하는 기존의 강도산정법과 비교한다. 이 비교결과에 따르면 , 새로운 방법에 비하여 기존의 방법은 면외 휨모멘크가 작은 영역에서 벽체의 강도를 과소평가하며, 면외 휨모멘트가 큰 영역에서는 벽체의 강도를 과대평가한다.