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GEOMETRY ON EXOTIC HYPERBOLIC SPACES

INKANG KM

ABSTRACT. In this paper we briefly descxibe the geometry of the
Cayley hyperbolic plane and we show that every uniform lattice in
quaternionic space cannot be deformed in the Cayley hyperbolic 2-
plane. We also deseribe the nongeometric bending deformation by
developmg the theory of the Cartan angular invariant for quaf:er-
nionic hyperbolic space.

1. Introduction

By the Mostow [7] rigidity it is known that two isomorphic uniform
lattices in rank one symmetric spaces of noncompact type of dimension
greater than two are actually conjugate. “But it does not say that a
uniform lattice cannot be isomorphic to a discrete torsion free group in
another symmetric space. The most well-known example js the Mickey
Mouse example by Thurston {9}, namely the bending of a Fuchsian group
into a quasi-fuchsian group in a higher dimensional real hyperbolic space.

It is also known by [10] that there is no quasi-fuchsian deformation in
 HE of a n(> 2)-dimensional uniform lattice in PU(n,1) whenn < m <
2n 1. By [2] it is proved that a uniform lattice in the Cayley hyperbohc
two plane cannot be isomorphic to the fundamental group of a compact
Kahler manifold.

In this note we develop the Cartan angular invariant for quaternionic
hyperbolic space to describe the non-geometric bending deformation in
the Cayley hyperbolic two plane. We also show that a uniform lattice in
quaternionic space cannot be deformed in the Cayley hyperbolic plane.
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2. Geometry of Cayley hyperbolic plane

2.1. Generalized Heisenberg group

General references of this section are [7],[4] and [6]. The Cayley hy-
perbolic plane H2 is one of four rank one symmetric spaces of non-
compact type, namely real R, complex C, quaternionic H and the Cay-
ley O hyperbolic spaces. Its full isometry group can be identified with
F;% and its isotropy group is Spin(9). In the Iwasawa decomposition,
Iso(H3) = F7® = Spin(9) AN where A is isomorphic to the real number
which acts as dilation along the geodesic and N is the two step nilpo-
tent group which we will describe in detail. The boundary of H} can be
identified with the one point compactification of N, 8H3 = N U oco. In
complex hyperbolic case, N is known as the Heisenberg group. N can
be naturally identified with

ImO+ O
with the multiplication law
[t, 2][s,w] = [t + s + 2Imzw, 2z + w)].
See [7] (page 141). The parabolic subgroup fixing oo is
Spin(7)AN.

Here Spin(7) fixes the origin of the space (using the unit ball model)
and co. The action, called the dilation of » € A in this generalized
Heisenberg coordinate, can be described as;

[t, 2] — [r’t, 2]

Nilpotent group N acts on itself by left multiplication fixing co. We
record some facts about the induced action of isometries on the ideal
boundary.

LEMMA 1. Ifv is a unit imaginary Cayley number, then [vw]{zD] =
v(wz)v~!. The action of an isometry on the ideal boundary of the Cayley
hyperbolic plane which fixes 0 and oo, is of the form: [t, 2] — [a(t), B(2)]
and the action [t, z] — [l%vtv~!,lv2|, where v is a unit imaginary Cayley
number, is one of those.

Proof. Note that Aut(Q) = G, and G acts transitively on unit imag-
inaries. The isotropy group of i is a copy of SU(3) and it acts transitively
on the unit imaginaries orthogonal to 7. The stabilizer of 7, 7 which fixes
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k, acts transitively on the unit imaginaries orthogonal to 4,7,k and it
is a copy of SU(2). See [4]. So using Aut(Q) we can assume that
w = (a,0),z = (b,0),v = (c,) where q,b, ¢ are quaternions and r is a
real. Then a direct calculation shows:
v(wz)v = (cab — r?ba, rcab + rbac)
(vw)(2v) = (cab — rba, rbca -+ rach).

But bca+ach = 2Re(bca) = 2Re(cab) = cab+bac, so v(wz)v = (vw)(zv).
Since v is a unit imaginary, 7 = v~! = —u. Now the claim follows from
these facts. . :

In the Iwasawa decomposition of Iso(X) = KAN, the hyperbolic
isometries belong to A x K where A is a maximal abelian subgroup
and K is a maximal compact group. We will show that the action
[t,2] — [t~ vz} is an isometry. Then since every bilipschitz map on
the ideal boundary comes from an isometry of the space [8],. this will
finish the proof. The images of two points [, z], [s,w] under the action
are [vtv~,vz] and [vsv~}, vw]. Then

d([vtv™!, v2], [vsv ™}, vw))?

= |[u(t - s)r™! = 2Im < v(w),v(z) >, vz — vu)|

=t —s—2Im<w,z >+ |z —w|!
=lt-s—2Im<w,z> |+ |z - w|*

= d([t’ 2], [s, w])“,' O

2.2. Totally geodesic submanifolds and their stabilizers

The general reference for this section is [3]. They worked out details
for real, complex and quaternionic hyperbolic spaces. Cayley number is
a pair of quaternions and define the multiplication by

(91, 9)(P1, p2) = (@P1 — P2, P21 + @211)-

Also we define (¢1, q2) = (¢i, —¢2). Then it satisfies the usual properties
like: zz = |z|?, |zyl = |zllyl, ™' = /|2|?, Ty = §z. Even though
Cayley numbers are neither commutative, nor associative, by Artin’s
lemma a subalgebra generated by two elements is associative. Mostow
([7], p- 144 and p. 136) worked out the distance formula of two points
in the unit ball model:

(1) cosh(d(z, g)) = WL {BUI + 2R(z, )2

(1= (z,z))12(1 - (y,y))/?
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where R{v,w) = Re(vi02)(wsl) — Re(vaws)(wv1) for the Cayley hy-
perbolic case and R(v, w) = 0 for other cases.

LEMMA 2. Totally geodesic proper subspaces H passing through the
origin in the unit ball model up to isometry are of the form:

1. H3,F=R,C,H.
2. HE,1<k<8.

Furthermore, Stab(H) = K'AN - K" where Iso(H) = KAN in its Iwa-
sawa decomposition and K" C Spin(9) fixes H pointwise.

Proof. Let H? = {(v,w) € H3lv,w € F}. Then by the distance
formula (1), any geodesic in Hg is a geodesic in H. Also Hg = {(v,0) €
H3} is a totally geodesic subspace which is called O-line by Mostow.
This O-line has constant negative sectional curvature and is isomorphic
to H§.

For the second part of the claim, first note that since K" fixes H
pointwise it is a subset of the stabilizer of the origin, which is Spin(9).
To prove the claim, we simply observe the action of isometries on the
ideal boundary which is N Uoo as described in the previous section. Let
Iso(H3) = Spin(9)AN be its Iwasawa decomposition. First note that
the ideal boundary of Hg is

oo U {[ImF, F]}.

The dilation action A preserves {{ImF,F]} U oo so it preserves Hg. This

shows that A C Stab(H). Also obviously the left multiplication by an

element in {[ImF,F]} preserves {{ImF,F]}. So N C Stab(H). K’ fixes

the origin and leaves invariant H, which is the subgroup of Spin(9).
When H is the O-line, the ideal boundary is

{{Im®, 0]}

By the same reasoning, the dilation and the multiplication by the ele-
ments in {[ImQ, 0]} preserve the set, so Stab(Hp) = Spin(8)AN - K’
where Spin(8) is the stabilizer of Q-line fixing the origin, K’ fixes O-line
pointwise and Iso(H}) = Iso(H§) = O(8)AN. Since Iso(Hg) action is
transitive, the other totally geodesic subspaces of O-line have the desired
form. ]
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3. Proof of the theorem

It is known that a connected semisimple Lie group with trw&l center
has a real algebraic structure ([11]). Throughout the section, the Zariski
closure means the real algebraic Zariski closure in the Lie group

THEOREM 1. Let I be a discrete torsion free subgroup of the group
F;?. IfT is isomorphic to a uniform lattice in Iso(Hg)(n > 2), then T
Ieaves invariant Hy and the restricted action is cocompact.

Proof. Let 7 be a uniform lattice in Iso(Hﬁ) and
p:r—=TC F

be the holonomy representation. Let T be the real Zariski closure of T

in F;2. If T = F; %, then by Corlette’s superngldlty, p extends to
p:Iso(HE) — F;2 v :

with onto image. Since Iso( H) is a simple group, p is an isomorphism.

This is possible only when Iso(Hg) = F;%°. Then it is a contradiction.

Let Ap be the Limit set of ' and H be the smallest. totally geodesic
subspace whose ideal boundary contains Ap. Since T leaves. mvamant
Ar, it leaves invariant H also. So we can think T' C Stab(H) ¢ F;?
Note here that if H = Hj, then T is Zariski dense in F7%, so we get the '
same contradiction as above. So we may assume that H # H% '

(Case I) H = H, HE, H. ,

By the results in the previous section, Stab(H) = K'AN - K" where
K',K" ¢ Spin(9),Iso(H) = KAN in their Iwasawa decomposition.
Let Pr be the projection onto the first factor of Stab(H) = K'AN - K”.
Then Pr(T) = K’AN since H is the smallest totally geodesic subspace
containing Ay, ie., Pr(I') is Zariski dense in K’AN. Since K'AN is
Zariski dense in KAN = Iso(Hg), again by Corlette s theorem, Prop
extends to an isomorphism ¢

¢ : Iso( HZ) — Iso(HE)
since K AN is semisimple with trivial center. Then this is possible only
when H = H§ = Hj. This shows that I' C Stab(Hg).
(Case ) H ¢ Hl H§.
Since H C H},, Stab(H ) C Stab(H{) = Spin(8)AN - K’ where
Iso(H$) = KAN,K' C Spin(8). Since Iso(H§) = O(8)AN, the re-
striction of Stab(H$) on HJ) is the whole isometry group of Iso(H}).
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This shows that Stab(H) = Iso(H) - K where H C H§ and K is the
subgroup of Spin(8) which fixes H pointwise. By the same reasoning as
in the case I, we get an isomorphism

¢ : Iso(HE) — Iso(H) = Iso(HE)(k < 8)

which is impossible by the assumption that n > 2.
So we proved
T C Stab(HE). _
Since the map ¢ constructed in the proof of Case I is an isomorphism,
the projection of I' onto Iso(HJ) is also an isomorphism. This means
that I' acts on H by cocompact lattice by the Mostow rigidity. This
proves that the restricted action of I' on H is cocompact. O

4. Bending deformation

Even though a uniform lattice in the quaternionic space cannot be
deformed in the Cayley plane, it is easy to see that a uniform lattice in
the real hyperbolic space can be deformed in Cayley hyperbolic plane.
In this section we want to describe the bending deformation of a uniform
lattice of Hg in the Cayley hyperbolic plane. Since HZ C Hg C H§, we
will describe the bending in Hg. If we set H = {(v,w) € H3|v,w € R},
this real hyperbelic 2-plane is orthogonal to Q-line {(0,v)|v € O}. They
share a real geodesic passing through the origin and (0,1) in the unit
ball model. The boundary of the real 2-plane called the R-circle is
also orthogonal to the boundary of @-line with respect to the standard
spherical metric (see [7], page 147). Let Hf = {(v,w)|v,w € H}. In the
generalized Heisenberg model

0Hx = {[O,R}}
0H), = {[ImO,0]}
OHZ = {[ImH,H]}.
There is a subgroup in Iso( Hg) which is a rotation around the Hj, which
can be described in the generalized Heisenberg coordinate as:
[t,2] = [t, p2]
where p € Sp(1). Now we will bend I' € Iso(Hg) in Iso(Hg). Let

be one-parameter group near identity in Sp(1). Let R} = u,(R*) where
R* is the positive half real line in 8HZ = {[0,R]}. Geometrically the
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negative half of H§ bounded by the geodesic y connecting the origin and
(1,0) remains fixed and the positive half of H bounded by « changes
into the space bounded by R;. Note that by conjugating I if necessary
to make some element in I’ have the invariant geodesic 7, the geodesic
7Y projects down to a closed geodesic in HE/T. Denote that element
by v also. If I' = Iy %4y Ty (Ty%y) = (T, @), HNN extension if v is a
non-separating geodesic in the Riemann surface HZ/T), then

Ly =Ty % Do~ (T eax)).

See [1]. Note that there is no quasi-conformal map inducing T, if there
is, there is an isometry between them by the Pansu’s rigidity [8], then I’
and T'; will be conjugate by this isometry. This is a difference from the
real or complex hyperbolic cases. :

COROLLARY 1. Let H be the boundary of a complex hyperbolic two
space. Then there is a quasi-conformal map from H into the ideal bound-
ary of Cayley two plane, which cannot be extended quasi-conformally to
the whole ideal boundary. '

Proof. By (1], if p, € U(1), the bending is induced from a quasi-
conformal homeomorphism between the boundary of complex hyperbolic
two plane. But by Pansu’s rigidity this map cannot be extended to the
whole ideal boundary of the Cayley two plane. O

Note there is (6g — 6)-parameter family of deformation coming from
the Teichmiiller space of the surface HZ/T' of genus g, and ‘some more
come from y;. None of these are quasi-conformal each other by the
Pansu’s rigidity. To see that T, is not a trivial deformation, i.e., not
conjugate to the original I', we introduce the generalized Cartan angular
invariant as in complex hyperbolic space.

4.1. Cartan angular invariant in quaternionic space

The general reference for this section is [5]. Let z = (zy,2s,23) €
(Hg U OHp) x (Hg U OHR) x (HE U OHE) be a triple of distinct three
points and choose lifts £; € Hﬁ’l. '

DEFINITION 1. The Cartan angular invariant of z, A(z), is the
angle between ¢; = (1,0,0,0) and (2, 45, 73) = (€1, Ta)(E2, £3){T3,%)-
Here we identify H = R*. :
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If we choose another triple of lifts v;Z;, then
(T, Voo, V3T3) = Vi1, £2) (L2, T3) (L3, T1) V1

Since the action of Sp(1) on R? by conjugation is orthogonal and leaves
invariant the real axis, the angle is independent of the choice of the
lifts. Here we list several properties of the Cartan angular invariant for
quaternionic hyperbolic space.

PROPOSITION 1. The Cartan angular invariant is invariant under the
permutation of z;.

Proof. (2, 21,23) = (T2, T1)(Z1, Z3) (T3, T2) = (21, T2) (T3,71) (T2, 73)
= (T2, T3){x3, T1)(T1, Z2) = (2, Z3,71). But the angle between e, and
(z9,T3,7:) is the same with the one between e; and (zs,z3,21). But
also the angle is unchanged under the conjugation by (zi,xs), so the
angle between e; and (z,z3,;) is equal to the one between e, and
(zy, T2) (2, T3, T1){(T1, T2) " = (21, T2, T3). S0 A(x1, T2, T3) = A(Z2, T3, T1)
= A(d)g, xy, 273). O

PROPOSITION 2. Let z = (z1,2,%3),y = (Y1,Y2,y3) be pairs of dis-
tinct triples such that
A(z) = A(y).

Then there is an isometry f in Iso( Hg) such that f(z;) = y;.

P’I‘OOf. Let X = (f17f2,f3>7y = <g11g2,g3> and |X| = |YI If A(IE) =
A(y), it is easy to see that there is an orthogonal matrix M € SO(3) x
identity which leaves invariant z-axis and maps X to Y. Since the
conjugation action of Sp(1) in R® is SO(3) action, there is 4 € Sp(1)
such that

(21, 22, B3) = {2, Ya) -
But if we can choose lifts Z;,g; so that (£;,Z;) = (i, ;) then there
is A € Sp(n,1) such that A(£;) = g;. Then it descends to an ele-
ment in PSp(n,1) sending z; to y;. First replacing 4; by ugy; (and still
denote it by gi), we get (£1, £2) (L2, T3) (£3, E1) = (1, ) (J2, ¥3) (¥, Y1)
Replacing #2, %3 by pefs, p3€s if necessary, we can make (L9, Z3) =
{42, U3), (€3, £1) = (U3, %1). Now the equation becomes

(£, Ea) (2, Fa) (£3, £1) = |pal?| s> (W, o) (G2, Us) (T3, 1)

and we get (%1, %2) = 7'<y1, ¥2) where 7 = |us||ps|. Replacing 21, £2, €3, 1
by 7~\Ey, 77 5y, 753, Gy we get (£, £5) = (§i, U5)- o
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THEOREM 2. Let 1,33, 73 € OHg. Let 013, Ty be real and quater-
nionic geodesic containing x,,z9 and 7 : HH — Ty be the orthogona;l
projection. Then '

|tan A(z)] = sinh(p(mz, 012))

where p is a distance in Hy.

Proof. Applying an isometry to z, we can make them zy = (0, ~1), 25 =
(0,1),z3 = (¢, z,) and so we can lift them to

& =(0,-1,1),8 = (0,1,1), 45 = (¢, 2, 1).

In this setting 032 = {(0,R)}, 12 = {(0,H)}. Then (£, £, £3) = 2(5, —
1)}(1 + 2,). So we get
|21m(zn)l

—
Note m(z3) = 2, and £y is a real hyperbohc 4 space in the Poincaré ball
model with curvature —1. Choose a real hyperbolic two plane containing
012 and z,. This plane is the Poincaré disk with curvature —1. Write
zp = Rez, + i|[lmz,| in the Poincaré unit disk. Then it is a direct
calculation to see that sinh(p(2,, real axis)) = '%%ﬁ’}' 0

|tan A(z)] =

THEOREM 3. Three points in the ideal boundary of a, guatemionic
n-space are in the boundary of real hyperbolic two plane iff A(z) = 0.

Proof. (=>)Applying an isometry, we can make them zy = (0,—1), 2, =
(0,1), 23 = (0, ) where r is real. Then (£}, %), 5) is real. So the angle
is zero.

(€) As in the proof of the previous theorem, let z; = (0 -1), 25 =
(0,1),z3 = (2, 2,) and lift them to £; = (0,-1,1),% = (0,1,1),43 =
(2',2n, 1). To get A(z) = 0, z, must be real. Now we use the generalized
projection from N U oo to the boundary of the unit ball model where N
is a nilpotent group in the Iwasawa decomposition of the isometry group,
to see that 3 lies on the boundary of a real hyperbolic twe plane The
generalized projection is (see [6])

1+ |22+t 1+lz|2+t
2] = [2|1 oy e R e P A S g t)]"
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Note that [0,0], co correspond to (0,1),(0,—1) respectively. A boundary
of the real hyperbolic two plane containing (0,1),(0,—1) in the unit ball
model correspond to the one in N U oo passing through the origin and
some point [0,z]. The reason is as follows. {[0,R]} is obviously the
boundary of the real hyperbolic two plane. Now the group fixing zero
and oo is Sp(n — 1) x R x Sp(1). Then for any [0, 2], |2| = 1,2 € H* !,
there is M € Sp(n — 1) which maps (1,0, ...,0) to z. So M sends [0, 1] to
[0, 2], which implies that it maps {[0,R]} to the line through the origin
and [0, z].

So if 2, is real, then its corresponding point in N Uoo has t = 0. This
shows that z3 is on the boundary of real hyperbolic two plane containing
(0,1),(0,-1). O

Now we can apply this theorem to show that the groups I'; is not
conjugate to I' in the previous section. For each I';, we can choose three
points in the limit set such that its product (£, Z5, £3) is not real. In a
similar fashion we can see that I';,I'; are not conjugate for small ¢ and
s.
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