• 제목/요약/키워드: In-phase voltage imbalance

검색결과 24건 처리시간 0.019초

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

  • Ramirez, Fernando Arturo;Arjona, Marco A.
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1235-1243
    • /
    • 2015
  • This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.

A High-efficiency Method to Suppress Transformer Core Imbalance in Digitally Controlled Phase-shifted Full-bridge Converter

  • Yu, Juzheng;Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.823-831
    • /
    • 2016
  • A high-efficiency method is proposed to suppress magnetic core imbalance in phase-shifted full-bridge (PSFB) converters. Compared with conventional solutions, such as controlling peak current mode (PCM) or adding DC blocking capacitance, the proposed method has several advantages, such as lower power loss and smaller size, because the additional current sensor or blocking capacitor is removed. A time domain model of the secondary side is built to analyze the relationship between transformer core imbalance and cathode voltage of secondary side rectifiers. An approximate control algorithm is designed to achieve asymmetric phase control, which reduces the effects of imbalance. A 60 V/15 A prototype is built to verify the proposed method. Experimental results show that the numerical difference of primary side peak currents between two adjacent cycles is suppressed from 2 A to approximately 0 A. Meanwhile, compared with the PCM solution, the efficiency of the PSFB converter is slightly improved from 93% to 93.2%.

오프셋 전압을 이용한 계통 연계형 3상 3레벨 T-type 태양광 PCS의 중성점 전압 불평형 보상 (Compensation of Unbalanced Neutral Voltage for Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS Using Offset Voltage)

  • 박관남;최익;최주엽;이영권
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.1-12
    • /
    • 2017
  • The DC link of Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS (PV-PCS) consists of two series connected capacitors for using their neutral voltage. The mismatch between two capacitor characteristics and transient states happened in load change cause the imbalance of neutral voltage. As a result, PV-PCS performance is degraded and the system becomes unstable. In this paper, a mathematical model for analyzing the imbalance of neutral voltage is derived and a compensation method using offset voltage is proposed, where offset voltage adjusts the applying time of P-type and N-type small vectors. The validity of the proposed methods is verified by simulation and experiment.

Unbalance Control Strategy of Boost Type Three-Phase to Single-Phase Matrix Converters Based on Lyapunov Function

  • Xu, Yu-xiang;Ge, Hong-juan;Guo, Hai
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.89-98
    • /
    • 2019
  • This paper analyzes the input side performance of a conventional three-phase to single-phase matrix converter (3-1MC). It also presents the input-side waveform quality under this topology. The suppression of low-frequency input current harmonics is studied using the 3-1MC plus capacitance compensation unit. The constraint between the modulation function of the output and compensation sides is analyzed, and the relations among the voltage utilization ratio and the output compensation capacitance, filter capacitors and other system parameters are deduced. For a 3-1MC without large-capacity energy storage, the system performance is susceptible to input voltage imbalance. This paper decouples the inner current of the 3-1MC using a Lyapunov function in the input positive and negative sequence bi-coordinate axes. Meanwhile, the outer loop adopts a voltage-weighted synthesis of the output and compensation sides as a cascade of control objects. Experiments show that this strategy suppresses the low-frequency input current harmonics caused by input voltage imbalance, and ensures that the system maintains good static and dynamic performances under input-unbalanced conditions. At the same time, the parameter selection and debugging methods are simple.

3상 모듈형 UPS용 PFC 제어기 설계 (PFC Controller Design for 3-Phase Modular UPS)

  • 박내춘;김상훈;지준근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.44-45
    • /
    • 2010
  • In this paper a new PFC Controller for 3-Phase Modular UPS is proposed. The PFC circuit for 3-Phase Modular UPS is implemented using three 1-phase 3-level boost PFC circuits. To control DC output voltage and AC input current, single voltage controller considering imbalance of two capacitor voltages and three independent current controllers are used in proposed PFC controller.

  • PDF

DC-Link Voltage Balance Control Using Fourth-Phase for 3-Phase 3-Level NPC PWM Converters with Common-Mode Voltage Reduction Technique

  • Jung, Jun-Hyung;Park, Jung-Hoon;Kim, Jang-Mok;Son, Yung-Deug
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.108-118
    • /
    • 2019
  • This paper proposes a DC-link voltage balance controller using the fourth-phase of a three-level neutral-point clamped (NPC) PWM converter with medium vector selection (MVS) PWM for common-mode voltage reduction. MVS PWM makes the voltage reference by synthesizing the voltage vectors that cannot generate common-mode voltage. This PWM method is effective for reducing the EMI noise emitted from converter systems. However, the DC-link voltage imbalance problem is caused by the use of limited voltage vectors. Therefore, in this paper, the effect of MVS PWM on the DC-link voltage of a three-level NPC converter is analyzed. Then a proportional-derivative (PD) controller for the DC-link voltage balance is designed from the DC-link modeling. In addition, feedforward compensation of the neutral point current is included in the proposed PD controller. The effectiveness of the proposed controller is verified by experimental results.

Sequence Pulse Modulation for Voltage Balance in a Cascaded H-Bridge Rectifier

  • Peng, Xu;He, Xiaoqiong;Han, Pengcheng;Lin, Xiaolan;Shu, Zeliang;Gao, Shibin
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.664-673
    • /
    • 2017
  • With the development of multilevel converters, cascaded single-phase H-bridge rectifiers (CHBRs) has become widely adopted in high-voltage high-power applications. In this study, sequence pulse modulation (SPM) is proposed for CHBRs. SPM is designed to balance the dc-link voltage and maintain the smooth changes of switch states. In contrast to phase disposition modulation, SPM balances the dc-link voltage even after removing the load of one submodule. The operation principle of SPM is deduced, and the unbalance degree of SPM is analyzed. All the proposed approaches are experimentally verified through a prototype of a four-module (nine-level) CHBR. Conclusions are drawn in accordance with the results of SPM and its imbalance degree analysis.

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

단상 배전 STATCOM을 이용한 전기철도시스템의 전압강하 및 전력품질 향상 (Compensation of voltage drop and improvement of power quality at AC railroad system with single-phase distributed STATCOM)

  • 김준상;김진오;이준경;정현수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.192-193
    • /
    • 2006
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion may also occur to AC electrical railroad system. These problems affect not only power system stability. but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, and then, it is analyzed voltage drop and power quality for AC electrical railroad system both with single-Phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

  • PDF

순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터 (3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation)

  • 이승요
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.739-743
    • /
    • 2000
  • With significant development of power electronics technology the proliferation of nonlinear loads such as such as static power converters has deteriorated power quality in power transmission distribution systems. Notably voltage harmonics resulting from current harmonies produced by the nonlinear loads have become a serious problem in many systems Moreover momentary interruptions and voltage sags are responsible for many of the power quality problems found in typical industrial plants. Int his paper proposed 3 phase hybrid series active power filter is not only for harmonic compensation but also for harmonic isolation between supply and load and for voltage regulation and imbalance compensation Through computer simulations we have verified the effectiveness of the proposed system.

  • PDF