• 제목/요약/키워드: In-line magnetron sputtering system

검색결과 23건 처리시간 0.033초

Dc magnetron sputtering system을 이용한 TFT-LCD를 위한 Al-Nd와 Al-Zr 박막 특성에 관한 연구 (characteristics of Al-Nd and Al-Zr thin film for TFT-FCD by DC magnetron sputtering system)

  • 김동식;정관수
    • 한국진공학회지
    • /
    • 제8권3A호
    • /
    • pp.245-248
    • /
    • 1999
  • Recently low resistance of gate line or data line is required for large screen size TFT-LCD panels. As a result, lower resistance Al-alloy is currently reviewed extensively and the resistivity is required smaller than 10$\mu\Omega$cm. In this paper, Al-Nd and Al-Zr thin film were deposited on glass substrated by D.C. magnetron sputtering system under various condition. Its properties were characterized by SEM, AFM, XRD and 4-point-probe. The optimal condition was $120^{\circ}C$, 125W, 0.4Pa, 30sccm (Ar) and $350^{\circ}C$, 20min. annealing. At that condition the resistivity of Al-Zr(0.9%wt.) is about 4$\mu\Omega$cm.

  • PDF

인라인 스퍼터 시스템을 이용한 펄스의 주파수 변화에 따른 NbOx 박막 특성에 관한 연구 (A Study on the Characteristics of NbOx Thin Film at Various Frequencies of Pulsed DC Sputtering by In-Line Sputter System)

  • 엄지미;오현곤;권상직;박정철;조의식;조일환
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.44-48
    • /
    • 2013
  • Niobium oxide($Nb_2O_5$) films were deposited on p-type Si wafers at room temperature using in-line pulsed-DC magnetron sputtering system with various frequencies. The different duty ratios were obtained by varying the frequency of pulsed DC power from 100 to 300 kHz at the fixed reverse time of $1.5{\mu}s$. From the thickness of the sputtered $NbO_x$ films, it was possible to obtain much higher deposition rate in case of pulsed-DC sputtering than RF sputtering. However, the similar leakage currents and structural characteristics were obtained from the metal-insulator-semiconductor(MIS) structure fabricated with the $NbO_x$ films and the x-ray photoelectron spectroscopy(XPS) results in spite of the different deposition rates. From the experimental results, the $NbO_x$ films sputtered by pulsed-DC sputtering are expected to be used in the fabrication process instead of RF sputtering.

DC 마그네트론 스퍼터링법에 의한 대면적 투명전도성 ZnO(Al)와 ZnO(AlGa) 박막제조 및 물리적 특성 연구 (Fabrication and Study of Transparent Conductive Films ZnO(Al) and ZnO(AlGa) by DC Magnetron Sputtering)

  • 손영호;최승훈;박중진;정명효;허영준;김인수
    • 한국진공학회지
    • /
    • 제22권3호
    • /
    • pp.119-125
    • /
    • 2013
  • In-line magnetron sputtering system을 사용하여 대면적($60{\times}60cm^2$) 소다라임 유리기판위에 투명전도성 ZnO(Al)와 ZnO(AlGa) 박막을 500 nm에서 1,450 nm까지 두께별로 증착하여 전기적, 광학적 특성을 연구하였다. XRD를 통해 c-축 방향성(002)을 가지고 성장된 것을 확인 하였다. Hall 특성 분석을 통해 이동도 및 캐리어 농도의 특성을 확인 하였으며, 그에 따른 ZnO(AlGa)의 비저항이 $9.03{\times}10^{-4}{\Omega}{\cdot}cm$에서 $7.83{\times}10^{-4}{\Omega}{\cdot}cm$으로 ZnO(Al) 보다 높게 나타났으며, 가시광선 영역에서 투과율은 87.6%에서 84.3%으로 나타났다. 따라서 ZnO(AlGa)는 전기적 특성이 우수하고 높은 투과율로 대면적용 투명전도성 재료로의 활용에 적합한 특성을 지닌 것을 확인 할 수 있었다.

Bipolar pulsed DC magnetron sputtering에서 정적 증착과 동적 증착에 의한 박막 특성 변화 (Thin film characteristics variation of static deposition and dynamic deposition by bipolar pulsed DC magnetron sputtering)

  • 양원균;주정훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.149-149
    • /
    • 2009
  • 실제 산업에서 가장 많이 사용하고 있는 in-line type system에서 Al-doped ZnO (AZO) 막을 bipolar pulsed DC sputtering을 이용해 증착하였다. 약 30 nm/sec의 속도로 기판을 타겟 좌우로 swing 하면서 동적 증착 공정을 한 AZO 박막의 columnar structure가 정적 증착일 때와 다른 형태의 zigzag-type columnar structure가 형성되었다. 투명전도막의 가장 중요한 특성인 비저항과 투과도가 동적 증착 공정일 때의 박막과 정적 증착 공정일 때의 박막이 각각 $2.5{\times}10^{-3}{\Omega}{\cdot}cm$, 78.5%와 $1.65{\times}10^{-3}{\Omega}{\cdot}cm$, 83.9% 였다. 이렇게 성장하는 막의 구조 형태에 따라 달라지는 특성 변화는 양산하는 현장에서 매우 중요한 것이며, 동적 증착 공정에서의 박막 특성 개선에 정적 증착 공정과는 다른 방법의 연구가 필요할 것이다.

  • PDF

In-line 마그네트론 스퍼터 장치를 사용하여 산소 분위기에서 제작한 Ag 박막의 특성 (Properties of Ag Thin Films Deposited in Oxygen Atmosphere Using in- line Magnetron Sputter System)

  • 구대영;김원목;조상무;황만수;이인규;정병기;이택성;이경석;조성훈
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.661-668
    • /
    • 2002
  • A study was made to examine the electrical, compositional, structural and morphological properties of Ag thin films deposited by DC magnetron sputtering in $O_2$ atmosphere with deposition temperature from room temperature to 15$0^{\circ}C$ using in-line sputter system. The Ag films deposited at temperature above $100^{\circ}C$ in oxygen atmosphere gave a similar specific resistivity to and even lower oxygen content than those deposited using pure Ar sputter gas The Ag films deposited with pure Ar gas was mainly composed of crystallites with [111] preferred orientation, while, for those deposited in oxygen atmosphere, more than 50% of the volume was composed of crystallites with [100] orientation. The difference in the micro structure did not cause any difference in the specific resistivity of Ag films. The results showed that the transparent conducting oxide films and the Ag films could be processed sequentially in the same deposition chamber with careful control of deposition temperature, which might result in a cost reduction for constructing the large scale in-line deposition system.

인라인 스퍼터를 이용한 알루미늄 도핑된 산화아연 박막의 증착 및 특성 최적화 연구 (Deposition and Optimization of Al-doped ZnO Thin Films Fabricated by In-line Sputtering System)

  • 강동원
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1236-1241
    • /
    • 2017
  • We deposited Al-doped ZnO (ZnO:Al) thin films on glass substrates ($200mm{\times}200mm$) by using in-line magnetron sputtering system. Effects of various deposition parameters such as working pressure, deposition power and substrate temperature on optoelectronic characteristics including surface-texture etching profiles were carefully investigated in this study. We found that relatively low working pressure and high deposition power offered to obtain enhanced conductivity and optical transmittance. Haze properties showed similar trend with the transmittance. Furthermore, surface-texture etching study exhibited good morphologies when the films were deposited at $200-300^{\circ}C$. On the basis of these optimizations, we could find the deposition region that produces highly transparent and conductive properties including efficient light scattering capability.

원통형 스퍼터링 장치로 제작한 Ti 및 Al 박막구조 (Structure of Ti and Al Films Prepared by Cylindrical Sputtering System)

  • 오창섭;한창석
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.344-350
    • /
    • 2014
  • Metal films (i.e., Ti, Al and SUH310S) were prepared in a magnetron sputtering apparatus, and their cross-sectional structures were investigated using scanning electron microscopy. The apparatus used consisted of a cylindrical metal target which was electrically grounded, and two anode rings attached to the top and to the bottom of the target. A wire was placed along the center-line of the cylindrical target to provide a substrate. When the electrical potential of the substrate was varied, the metal-film formation rate depended on both the discharge voltage and the electrical potential of the substrate. As we made the magnetic field stronger, the plasma which appeared near the target collected on the plasma wall surface and thereby decreased the bias current. The bias current on the conducting wire was different from that for cation collection. The bias current decreased because the collection of cations decreased when we increased the magnetic-coil current. When the substrate was electrically isolated, the films deposited showed a slightly coarse columnar structure with thin voids between adjacent columns. In contrast, in the case of the grounded substrate, the deposited film did not show any clear columns but instead, showed a densely-packed granular structure. No peeling region was observed between the film and substrate, indicating good adhesion.

PDP용 MgO 박막의 스퍼터 연구 (Sputtering of Magnesium Oxide this film for Plasma Display Panel Application)

  • 최영욱;김지현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1732-1734
    • /
    • 2003
  • An MgO thin film sputtering system for the PDP (Plasma Display Panel) applications has been developed. This system was manufactured with a vertical In-Line type of 42 inch, which has the length of 520 mm and the width of 900 mm. A reactive magnetron discharge for this sputtering was generated using an unipolar pulsed power supply which has functions of constant voltage (Max. 500 V) and current (Max. 15 A) control, frequency of $10{\sim}100$ kHz and duty ratio of $10{\sim}60$ %. The experiment was conducted under various conditions : $3{\sim}10$ mTorr of pressure, the ratio of $O_2$/Ar = $0.1{\sim}0.5$, 50 % of duty and power of $0.5{\sim}1.7$ kW. From the experiment, the deposition rate of a static state and a moving state were measured to be about 45 nm/min and 6 nm m/min at the distance of 50 mm between the target and the substrate, respectively.

  • PDF

Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구 (A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering)

  • 정종국;임실묵
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.