• 제목/요약/키워드: In-line inspection

검색결과 535건 처리시간 0.03초

콘크리트 터널 라이닝 균열검사 시스템 개발에 관한 연구 (Development of Inspection System for Crack on the Lining of Concrete Tunnel)

  • 고봉수;손영갑;신동익;김병화;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.66-72
    • /
    • 2004
  • To assess tunnel safety, cracks in tunnel lining are measured by inspectors, who observe cracks with their naked eyes and record them. But manual inspection is slow, and measured crack data is subjective. Therefore, this study proposes inspection system fur measuring cracks in tunnel lining and providing objective crack data to be used in safety assessment. The system consists of On-vehicle system and Laboratory system. On-Vehicle system acquires image data with line CCD camera on scanning along the tunnel lining. Laboratory system extracts crack information from the acquired image using image processing. Measured crack information is crack thickness, length and orientation. To improve accuracy of crack recognition, the geometric properties and patterns of cracks in concrete structure were applied to image processing. The proposed system was verified with experiments in both laboratory environment and field environment such as subway tunnel.

자동차 글라스 조립 자동화설비를 위한 프라이머 도포검사 비전시스템 개발 (Primer Coating Inspection System Development for Automotive Windshield Assembly Automation Facilities)

  • 김주영;양순호;김민규
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.124-130
    • /
    • 2023
  • Implementing flexible production systems in domestic and foreign automotive design parts assembly has increased demand for automation and power reduction. Consequently, transition to a hybrid production method is observed where multiple vehicles are assembled in a single assembly line. Multiple robots, 3D vision sensors, mounting positions, and correction software have complex configurations in the automotive glass mounting system. Hence, automation is required owing to significant difficulty in the assembly process of automobile parts. This study presents a primer lighting and inspection algorithm that is robust to the assembly environment of real automotive design parts using high power 'ㄷ'-shaped LED inclined lighting. Furthermore, a 2D camera was developed in the primer coating inspection system-the core technology of the glass mounting system. A primer application demo line applicable to the actual automobile production line was established using the proposed high power lighting and algorithm. Furthermore, application inspection performance was verified using this demo system. Experimental results verified that the performance of the proposed system exceeded the level required to satisfy the automobile requirements.

비전기반 타이어 몰드 불량 검사 및 검사서 출력 시스템 (Vision Based Tire Mold Defect Inspection and Printing System)

  • Lee, Si-Woong;Kang, Hyun-Soo
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.849-852
    • /
    • 2021
  • This paper presents a vision based tire mold inspection system where mold defects are inspected and the sizes of specific parts of the mold are measured. There are a lot of challenging issues as letters and pictures of intaglio are engraved on a bright surface of the tire mold. To solve the issues, we carefully selected a line-scan camera and a line light. In addition, we used PLC to control the mechanical parts. The developed system provides inspection of misspelled and deformed letters as well as a variety of the functions such as size measurement of engraved regions and inspection report file creation.

공압출 다층 플라스틱 필름 라인을 위한 결함 검사 시스템 (An Inspection System for Multilayer Co-Extrusion Blown Plastic Film Line)

  • 한종우;무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.45-51
    • /
    • 2012
  • Multilayer co-extrusion blown film construction is a popular technique for producing plastic films for various packaging industries. Automated detection of defective films can improve the quality of film production process. In this paper, we propose a film inspection system that can detect and classify film defects robustly. In our system, first, film images are acquired through a high speed line-scan camera under an appropriate lighting system. In order to detect and classify film defects, an inspection algorithm is developed. The algorithm divides the typical film defects into two groups: intensity-based and texture-based. Intensity-based defects are classified based on geometric features. Whereas, to classify texture-based defects, a texture analysis technique based on local binary pattern (LBP) is adopted. Experimental results revealed that our film inspection system is effective in detecting and classifying defects for the multilayer co-extrusion blown film construction line.

Real-Time Pipe Fault Detection System Using Computer Vision

  • Kim Hyoung-Seok;Lee Byung-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.30-34
    • /
    • 2006
  • Recently, there has been an increasing demand for computer-vision-based inspection and/or measurement system as a part of factory automation equipment. In general, it is almost impossible to check the fault of all parts, coming from part-feeding system, with only manual inspection because of time limitation. Therefore, most of manual inspection is applied to specific samples, not all coming parts, and manual inspection neither guarantee consistent measuring accuracy nor decrease working time. Thus, in order to improve the measuring speed and accuracy of the inspection, a computer-aided measuring and analysis method is highly needed. In this paper, a computer-vision-based pipe inspection system is proposed, where the front and side-view profiles of three different kinds of pipes, coming from a forming line, are acquired by computer vision. And the edge detection is processed by using Laplace operator. To reduce the vision processing time, modified Hough transform is used with clustering method for straight line detection. And the center points and diameters of inner and outer circle are found to determine eccentricity of the parts. Also, an inspection system has been built so that the data and images of faulted parts are stored as files and transferred to the server.

Wavelet Analysis to Real-Time Fabric Defects Detection in Weaving processes

  • Kim, Sung-Shin;Bae, Hyeon;Jung, Jae-Ryong;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.89-93
    • /
    • 2002
  • This paper introduces a vision-based on-line fabric inspection methodology of woven textile fabrics. Current procedure for determination of fabric defects in the textile industry is performed by human in the off-line stage. The advantage of the on-line inspection system is not only defect detection and identification, but also 벼ality improvement by a feedback control loop to adjust set-points. The proposed inspection system consists of hardware and software components. The hardware components consist of CCD array cameras, a frame grabber and appropriate illumination. The software routines capitalize upon vertical and horizontal scanning algorithms characteristic of a particular deflect. The signal to noise ratio (SNR) calculation based on the results of the wavelet transform is performed to measure any deflects. The defect declaration is carried out employing SNR and scanning methods. Test results from different types of defect and different style of fabric demonstrate the effectiveness of the proposed inspection system.

자동차 글라스 조립 자동화설비를 위한 FPGA기반 실러 도포검사 비전시스템 개발 (Development of an FPGA-based Sealer Coating Inspection Vision System for Automotive Glass Assembly Automation Equipment)

  • 김주영;박재률
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, an FPGA-based sealer inspection system was developed to inspect the sealer applied to install vehicle glass on a car body. The sealer is a liquid or paste-like material that promotes adhesion such as sealing and waterproofing for mounting and assembling vehicle parts to a car body. The system installed in the existing vehicle design parts line does not detect the sealer in the glass rotation section and takes a long time to process. This study developed a line laser camera sensor and an FPGA vision signal processing module to solve this problem. The line laser camera sensor was developed such that the resolution and speed of the camera for data acquisition could be modified according to the irradiation angle of the laser. Furthermore, it was developed considering the mountability of the entire system to prevent interference with the sealer ejection machine. In addition, a vision signal processing module was developed using the Zynq-7020 FPGA chip to improve the processing speed of the algorithm that converted the profile to the sealer shape image acquired from a 2D camera and calculated the width and height of the sealer using the converted profile. The performance of the developed sealer application inspection system was verified by establishing an experimental environment identical to that of an actual automobile production line. The experimental results confirmed the performance of the sealer application inspection at a level that satisfied the requirements of automotive field standards.

154kV 활선 애자련의 불량애자를 검출하는 활선애자 점검기 개발 (Development of Inspection Tool for 154kV Live-line Insulator string)

  • 이재경;박준영;오기용;조병학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.373-374
    • /
    • 2008
  • To prevent an insulator failure, a new inspection system is presented for 154kV insulator strings. The inspection system detects fault insulators by measuring resistance and voltage of each insulators in the 154kV insulator string. The inspection instrument obtains autonomously insulation resistance and assigned voltage along the insulator string. The insulator inspection instrument is manipulated by two operators. In addition, a set of mechanism is applied to prevent the system from being reset under live-line condition. We confirmed its effectiveness through experiments.

  • PDF

전자부품의 고속 외관검사를 위한 시스템 설계 (System Design for High-speed Visual Inspection of Electronic Components)

  • 유승열
    • 반도체디스플레이기술학회지
    • /
    • 제11권3호
    • /
    • pp.39-44
    • /
    • 2012
  • Electronics in modern lives have become more miniaturized and precise. Multi Layered Ceramic Capacitor (MLCC) occupies 50% of electronic components consisting of electronics. This high volume of the production needs high speed and more precise machine performances. The dominate parts of the production equipments are the module transporting components and the visual inspection module. Most visual inspection has been off-line because of the image processing time. In this paper, a new image processing method is proposed to reduce thousands of matrix calculation for image processing and realize on-line high speed inspection.

머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구 (A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera)

  • 김태화;이천
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.