• Title/Summary/Keyword: In-grid Condition

Search Result 593, Processing Time 0.031 seconds

RTDS based Transient Analysis of PMSG Type wind Power Generation System (RTDS를 이용한 영구자석형 동기발전기를 갖는 풍력발전시스템의 과도현상 해석)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Kim, Nam-Won;Lee, Hyo-Guen;Seo, Hyo-Ryong;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.572-576
    • /
    • 2011
  • The operation of permanent magnet synchronous generator (PMSG) type wind power generation system (WPGS) can be affected by the utility condition. Consequently, transient condition of utility should be analyzed for the safe and reliable operation of WPGS. This paper presents transient analysis results of a PMSG type WPGS using real time digital simulator (RTDS). A fault condition was applied to the transient analysis of PMSG type WPGS as the transient grid condition. The simulation results were analyzed to show the operational characteristic of PMSG type WPGS under the transient phenomenon of utility.

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

Development of three-dimensional global MHD model for an interplanetary coronal mass ejection

  • An, Jun-Mo;Magara, Tetsuya;Inoue, Satoshi;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2015
  • We developed a three-dimensional magnetohydrodynamic (MHD) code to reproduce the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain. On the basis of a comparison between a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  • PDF

Designing of Smart WAMAC Infra Architecture based on Synchro-Phasor (Synchro-Phasor 기반의 Smart WAMAC 인프라 아키텍쳐 설계)

  • Kim, Ji-Young;Woo, Doug-Je;Kim, Sang-Tae;Choi, Mi-Hwa;Kim, Yong-Kwang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1549-1559
    • /
    • 2010
  • Modern power system is operated and managed in closed network environment with treating a great variety of data, and requirement of real time power system data is more increasing. However, it is difficult for operators to fast evaluate the condition of power system using only isolation network system such as SCADA or EMS regarding unexpecting situations occurring. Recent technology achievement in areas of distributed computing, networking high speed communications and digital control as well as the availability of accurate GPS time source are rapidly becoming the enabling factors for the development of a new generation of real time power grid monitoring tools. In this paper, architecture of WAMAC which is the wide area monitoring and control system not only to control but also to monitoring in real time is proposed and the plan of integration interface with legacy system such as EMS for providing power system analysis base data effectively is suggested.

Power Cable Ampacity and Influential Factors Analysis under Operation

  • Tong, Qiang;Qi, Jianping;Wang, Yanling;Liang, Likai;Meng, Xiangxing;Zhang, Qiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1136-1149
    • /
    • 2018
  • With the increasing of urban electricity demand, making the most use of the power cable carrying capacity has become an important task in power grid system. Contrary to the rated ampacity obtained under extremely conservative conditions, this paper presents the various steady value of cable ampacity by using the changing surrounding parameters under operation, which is based on cable ampacity calculation equation under the IEC-60287 standard. To some degree, the cable ampacity analysis of actual surroundings improves the transmission capacity of cables. This paper reveals the factors that influence cable ampacity such as insulating layer thickness, allowable long-term conductor temperature, the ambient temperature, soil thermal resistance coefficient, and so on, then gives the class of the influence of these parameters on the ampacity, which plays a great role in accurately calculating the real-time ampacity and improving the utilization rate of cable in the complex external environment condition. Furthermore, the transient thermal rating of the cable is analyzed in this paper, and temperature variation of the conductor under different overload conditions is discussed, which provides effective information for the operation and control of the system.

A Numerical Analysis of a Discontinuous Flow with TVD Scheme (TVD기법을 이용한 불연속 흐름의 수치해석)

  • Jeon, Jeong-Sook;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.597-608
    • /
    • 2003
  • A transcritical flow occurs when the width and slope of a channel are varying abruptly. In this study, the transcritical flow in a two-dimensional open channel is analyzed by using the shallow-water equations. A weighted average flux scheme that has flux limiter with a total variation diminishing condition is introduced for a second-order accuracy in time and space, and non- spurious oscillations at discontinuous points. A HLLC method with three wane speeds is employed to calculate the Riemann problem. To overcome difficulties resulting from variation of channel sections in a two-dimensional analysis of transcritical flow, the numerical model is developed based on a generalized grid system.

Development of Automatic Cruise System of Unmanned Boat for Surveying Water Depth in Reservoir Using GIS-GPS Technologies (GIS-GPS 기술을 이용한 저수지 수심측정 무인보트의 자율항법시스템 개발)

  • Kim, Dae-Sik;Kim, Jin-Taek;Pyo, Ki-Hyong;Lee, Jin-Bum
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.9-17
    • /
    • 2010
  • In this paper, an automatic cruise system of unmanned boat was developed for surveying water depth in reservoir using GIS (geographic information system)-GPS (global positioning system) Technologies. the automatic cruise system consisted of an automatic path generation program (APGP) and an automatic boat control program (ABCP). A grid processing method with $3{\times}3$ roving window in GIS function was used to develop the APGP. For development of the ABCP, GPS and its coordinate calculation technique were introduced. The developed system was tested to verify the applicability for a sample reservoir, Misan reservoir located on Ansan city of Kyunggi province. From the test results, this study found the APGP generated cruise path automatically according to input condition on grid size of 5 m, 10 m, and 20 m, as well as, the ABCP also tracked well the cruise paths with high position accuracy. Another verification result on surveying time for 20 ha of water area also showed that the new system could survey water depth of reservoir quickly, including very high quality of spatial resolution.

A Study of Numerical Analysis for Stage Separation Behavior of Two-body Vehicle (비행체 단분리 거동 예측에 대한 수치 연구)

  • Park, Geunhong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • A numerical investigation of stage separation behavior of a two-body vehicle focusing on its flow characteristics is carried out. For this simulation, the separation of a booster from a vehicle is modeled using a chimera grid system and calculated with commercial code, $CFD-FASTRAN^{TM}$. Consideration of spring force, gravity and relative acceleration of a booster is the essential factor of a realistic simulation. In this study, it is validated that the booster separation time decreases with an increase in flight Mach number and angle of attack. In view of results thus far achieved, it is expected that the dynamics modeling and boundary condition set-up applied in this study will be useful for estimating safe stage separation and event sequencing of flight tests.

Numerical investigation of water-entry characteristics of high-speed parallel projectiles

  • Lu, Lin;Wang, Chen;Li, Qiang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.450-465
    • /
    • 2021
  • In this study, an attempt has been made to investigate the water-entry characteristics of the high-speed parallel projectile numerically. The shear stress transport k-𝜔 turbulence model and the Zwart-Gerber-Belamri cavitation model based on the Reynolds-Averaged Navier-Stokes method were used. The grid independent inspection and grid convergence index is carried out and verified. The influences of the parallel water-entry on flow filed characteristics, trajectory stability and drag reduction performance for different values of initial water-entry speed (𝜈0 = 280 m/s, 340 m/s, 400 m/s) and clearance between the parallel projectiles (Lp = 0.5D, 1.0D, 2.0D, 3.0D) are presented and analyzed in detail. Under the condition of the parallel water-entry, it can be found that due to the intense interference between the parallel projectiles, the distribution of cavity is non-uniform and part of the projectile is exposed to water, resulting in the destruction of the cavity structure and the decline of trajectory stability. In addition, the parallel projectile suffers more severe lateral force that separates the two projectiles. The drag reduction performance is impacted and the velocity attenuation is accelerated as the clearance between the parallel projectiles reduces.

Analysis of Large-Amplitude Ship Motions Using a Cartesian-Gridbased Computational Method (직교격자 기반 수치기법을 이용한 선박의 대변위 운동해석)

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, a Cartesian-grid method based on finite volume approach is applied to simulate the ship motions in large amplitude waves. Fractional step method is applied for pressure-velocity coupling and TVD limiter is used to interpolate the cell face value for the discretization of convective term. Water, air, and solid phases are identified by using the concept of volume-fraction function for each phase. In order to capture the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with weighed line interface calculation (WLIC) method which considers multidimensional information. The volume fraction of solid body embedded in the Cartesian grid system is calculated using a level-set based algorithm, and the body boundary condition is imposed by a volume weighted formula. Numerical simulations for the two-dimensional barge type model and Wigley hull in linear waves have been carried out to validate the newly developed code. To demonstrate the applicability for highly nonlinear wave-body interactions such as green water on the deck, numerical analysis on the large-amplitude motion of S175 containership is conducted and all computational results are compared with experimental data.