• Title/Summary/Keyword: In-Plane Free Vibration

Search Result 171, Processing Time 0.023 seconds

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

Out-of-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 면외 진동해석)

  • Kang, Ki-Jun;Kim, Jang-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.417-425
    • /
    • 2007
  • The differential quadrature method(DQM) is applied to computation of eigenvalues of the equations of motion governing the free out-of-plane vibration for circular curved beams including the effects of rotatory inertia and transverse shearing deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with exact solutions or numerical solutions by other methods for cases in which they are available. The DQM provides good accuracy even when only a limited number of grid points is used.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

Free Vibration Analysis of Thin-walled Curved Beams with Unsymmetric Cross-section (비대칭 단면을 갖는 박벽 곡선보의 자유진동 해석)

  • 김문영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1999
  • For free vibration of non-symmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for in-plane free vibration behaviors of simply supported thin-walled curved beams with monosymmetric cross-sections is newly derived. Also, a finite element formulation using two noded curved beams element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the straight beam element and the ABAQUS's shell element.

  • PDF

Free vibration analysis of laminated composite beam under room and high temperatures

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.111-130
    • /
    • 2014
  • The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, hole location and stacking layer sequence ($[0/45/-45/90]_s$, $[45/0/-45/90]_s$ and $[90/45/-45/0]_s$) on natural frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and $100^{\circ}C$) temperatures for the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free vibration of symmetric laminated beams is studied by Timoshenko's first order shear deformation theory. For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole diameter, stacking layer sequence and hole location have important effect especially on the second and third mode natural frequency values for the short beams and the high temperatures affects the natural frequency values significantly. The results are presented in tabular and graphical form.

Free Vibrations of Tapered Circular Arches Considering Rotatory Inertia. Shear Deformation and Axial Deformation (회전관성, 전단변형 및 축변형을 고려한 변단면 원호아치의 자유진동)

  • 오상진;모정만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1254-1259
    • /
    • 2001
  • This paper deals with the free vibrations of circular arches with variable cross-section. The differential equations governing free, in-plane vibrations of tapered circular arches, including the effects of rotatory inertia, shear deformation and axial deformation, are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for the quadratic arches with hinged-hinged and clamped-clamped end constraints. Three general taper types for a rectangular section are considered. The lowest four natural frequencies and mode shapes are presented over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio and the section ratio.

  • PDF

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

Dynamic behaviour of orthotropic elliptic paraboloid shells with openings

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.225-235
    • /
    • 2017
  • In this paper a vibration study on orthotropic elliptic paraboloid shells with openings is carried out by using a hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Natural frequencies of orthotropic elliptic paraboloid shells with and without openings are presented. The influence of aspect ratio, height ratio, opening ratio and material angle on the frequencies and mode shapes are investigated.