• Title/Summary/Keyword: In-Plane Displacement

Search Result 732, Processing Time 0.027 seconds

Model Test on the Optimization of Concave-Shaped Face Development for Rapid Tunnel-Whole-Face Excavation (대단면 급속시공을 위한 최적의 곡면막장형상개발에 관한 모형실험)

  • Ryu, Seung-Il;Yoon, Ji-Son
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1335-1342
    • /
    • 2005
  • In this paper, there is intended to introduce the new tunnel face shape, that is concave shaped face, and discusses its effects on the tunnel stabilization. Therefore, a comparative analysis in which the stability of a concave face was compared to that of a conventional plane face on the basis of displacement patterns in the tunnel face was conducted using a model test. In order to check and confirm displacement patterns on the concave face according to the radius of curvature as well as those around the face according to lateral pressure coefficient(k), two experimental concave models, produced at a scale of 1:2 and 1:5(tunnel radius), of the forefront of the curved area extended from plane face was built and tested.

  • PDF

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions

  • Chun, Kyoung-Sik;Kassegne, Samuel Kinde;Park, Won-Tae
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.643-658
    • /
    • 2008
  • In this paper, we present a quadratic element model based on non-conforming displacement modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of two additional non-conforming modes that are added to the translational degree of freedom to improve the behavior of a membrane component. Further, the modification of the shape functions through quadratic polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes considerably distorted. To establish its accuracy and efficiency, the element is compared with existing elements and - over a wide range of mesh distortions - it is demonstrated to be exceptionally accurate in predicting displacements and stresses.

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

The Study on Measurement of In-Plane Displacement in Mechanical Structure applied to Washing Machine using ESPI (ESPI를 이용한 세탁기 적용 기계 구조물의 면내변위 측정에 관한 연구)

  • Lee, Hac-Ju;Kim, Sang-Tea;Choi, Eun-Oh;Chang, Seog-Weon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.108-113
    • /
    • 2001
  • Recently, the mechanical structures applied to many industrial products, especially in electronic products, appear to be miniaturized and complicated. This trend makes it difficult to analyze the stress distribution of those mechanical structures and generates new challenges for precise measurement of strain. Therefore, generally most of those cases largely depend on the finite element analysis. But the development of optical metrology which has the capability of non-contact, full-field and precise measurement makes it possible to solve these measuring problems. Among the optical measurement techniques, the electronic speckle pattern interferometry (ESPI) has been developed and considered as one of the most useful tools for measuring displacement and deformation. But the shortage of recognition and difficulties of measurement have limited its industrial applications in spite of its excellent capabilities. Therefore in this study, in order to enhance the industrial application of ESPI, the measurement of in-plane displacement of mechanical structure with ESPI, which is applied to washing machine and cannot be measured by strain gauges, was performed. And the verification of validity of FEA results was also done.

  • PDF

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

Structural Behavior of Cement Concrete Pavement at Transverse Joint Using Model Test

  • Ko, Young-Zoo;Kim, Kyung-Soo;Bae, Ju-Seong
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.23-30
    • /
    • 2000
  • This paper presents behavior of concrete pavement at transverse joint subject to static test load. The test was conducted on 1/10 scale model in the laboratory. Load transfer across the crack is developed either by the interlocking action of the aggregate particles at the faces of the joint or by a combination of aggregate interlock and mechanical devices such as dowel bars. In this study, significant three variables considered to the performance of joints were selected. : (a)diameter of dowel bars(2.5mm, 3.0mm, 4.0mm), (b)presence or absence of dowel bars, (c)aggregate types(crushed stone, round stone). Experimental results were analyzed to find relationships among displacement of discontinuous plane at jointed slab, load transfer efficiency and joint opening, etc. Displacement of discontinuous plane at joint was decreased according to the increase of dowel bar diameter. In addition, it is found that model slabs made using crushed stone had better load transfer characteristics by aggregate interlock than model slabs made using similarly graded round stone. Displacement of discontinuous plane was increased according to the increase of loading. In addition, it was decreased as dowel diameter(2.5mm, 3.0mm, 4.0mm) was increased. In the case of slab without dowel bars, displacement of discontinuous plane was greatly increased and load transfer effciency of slab applied crushed stone was shown 30 percent greater than round stone. In addition, load transfer efficiency of slabs, which were made using crushed and round stone without dowel bars, was decreased to 20 percent and 30 percent, respectively as it was compared with slabs made us-ing dowel bars.

  • PDF

Stress and Displacement Fields of a Propagating Mode III Crack in Orthotropic Piezoelectric Materials (직교이방성 압전재료에서 전파 하는 모드 III 균열의 응력장과 변위장)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.701-708
    • /
    • 2010
  • The stress and displacement fields of a permeable propagating crack in orthotropic piezoelectric materials under anti-plane shear mechanical load and in-plane electric load are analyzed. The equations of motion for the propagating crack in piezoelectric materials are developed and the solution on the stress and the displacement fields through an asymptotic analysis was obtained. The influences of the piezoelectric constant and of the dielectric permittivity on the stress and displacement fields at the crack tip are explicitly clarified. Using the stress and displacement fields obtained in this study, the characteristics of stress and displacement at a propagating crack tip in piezoelectric materials are discussed.

A Study on the Measurement of two Dimensional Strain by ESPI Method and Image processing (E.S.P.I법과 화상처리에 의한 2차원의 스트레인 측정에 관한 연구)

  • KIM, K.S.;KIM, H.S.;YANG, S.P.;KIM, C.W.;JUNG, Y.G.;HONG, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • ESPE(Electonic-Speckle-Pattern-Interferometry) is very useful method for measuring In-plane displacement. Using the CW-Laser and Image processing system, it is possible to measure displacement and strain. Unlike traditional straingauge or moire' method, ESPI method requires no special surface preparation or attachments and can be measured In-plane displacement with no contact and real time. In this experimental specimen was loaded in paralled with loadcell, which provided loading step. The specimen was sheet plate, which was attached straingauge in x-y direction. In this study provides an example of how ESPI has been used to measure two dimensional displacement and strain distribution in this specimen. The results measured by ESPI compare with the data which was measured straingauge method in tensile testing at 1 ton range.

  • PDF

Wind Mapping of Singapore Using WindSim (WindSim을 이용한 싱가폴 바람지도 작성)

  • Kim, Hyun-Goo;Lee, Jia-Hua
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.839-843
    • /
    • 2011
  • We have established a wind map of Singapore, a city-state characterized its land cover by urban buildings to confirm a possibility of wind farm development. As a simple but useful approximation of urban canopy, a zero-plane displacement concept was employed. The territory is divided into 15 sectors having similar urban building layouts, and zero-plane displacement, equivalent roughness height at each sector was calculated to setup a terrain boundary condition. Annual mean wind speed and mean wind power density map were drawn by a CFD micrositing model, WindSim where Changi International Airport wind data was used as an in-situ measurement. Unfortunately, predicted wind power density does not exceed 80 $W/m^2$ at 50 m above ground level which would not sufficient for wind power generation. However, the established Singapore wind map is expected to be applied for wind environment assessment and urban planning purpose.