• 제목/요약/키워드: In-Plane Buckling

검색결과 329건 처리시간 0.029초

Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes

  • Tounsi, Abdelouahed;Benguediab, Soumia;Adda Bedia, El Abbas;Semmah, Abdelwahed;Zidour, Mohamed
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.1-11
    • /
    • 2013
  • The thermal buckling properties of double-walled carbon nanotubes (DWCNTs) are studied using nonlocal Timoshenko beam model, including the effects of transverse shear deformation and rotary inertia. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The geometric nonlinearity is taken into account, which arises from the mid-plane stretching. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling temperatures under uniform temperature rise are obtained. The results show that the critical buckling temperature can be overestimated by the local beam model if the nonlocal effect is overlooked for long nanotubes. In addition, the effect of shear deformation and rotary inertia on the buckling temperature is more obvious for the higher-order modes. The investigation of the thermal buckling properties of DWCNTs may be used as a useful reference for the application and the design of nanostructures in which DWCNTs act as basic elements.

낮은 포물선 아치의 탄성 면내좌굴에 관한 근사식 (Approximate Solution for In-Plane Elastic Buckling of Shallow Parabolic Arches)

  • 문지호;윤기용;이종원;이학은
    • 한국강구조학회 논문집
    • /
    • 제18권4호
    • /
    • pp.427-436
    • /
    • 2006
  • 고전 좌굴 이론의 경우 좌굴 발생전 아치의 거동을 선형으로 가정하며, 전좌굴 변형을 무시한다. 이러한 가정은 비대칭 좌굴이 발생하는 깊은 아치의 경우 타당한 것으로 알려져 있다. 하지만 아치의 라이즈가 낮아지는경우 전좌굴 발선형성은 무시할 수 없으며, 비대칭 좌굴 강도보다 대칭 좌굴 강도가 낮아져 아치는 대칭좌굴에 의해 강도가 결정될 수 있다. 본 연구는 아치의 비선형 지배 미분 방정식을 이용하여 양단 힌지를 갖는 낮은 포물선 아치의 거동에 관한 연구를 수행하고 이러한 결과를 유한 요소 해석을 이용하여 검증하였다. 마지막으로 양단 힌지를 갖는 낮은 포물선 아치의 대칭 좌굴 강도에 관한 근사식을 제안하였다.

보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제1보)(第1報) -압축(壓縮) 좌굴(挫屈)- (The Buckling Analysis of Stiffened Plate with Hole($1^{st}$ Report) -Compression Buckling-)

  • 임상전;장창두;나승수
    • 대한조선학회지
    • /
    • 제19권4호
    • /
    • pp.11-18
    • /
    • 1982
  • When the perforated plate is under in-plane load of compression, buckling analysis becomes to be necessary because of the presence of stress concentration around holes. To constraint it, we need reinforcement. The methods of reinforcement are attaching doubler around hole and attaching stiffener in the direction of initial stress. In this paper, two methods are investigated mentioned above, which of the two better effective reinforcement. In the consequence of the above investigation, following conclusion was obtained. The method of doubler reinforcement was less buckling stress than that of stiffener because the former had large compressive stress. So, effective method of reinforcement is stiffener reinforcement.

  • PDF

Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending

  • Kim, Hee Soon;Park, Yong Myung;Kim, Byung Jun;Kim, Kyungsik
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.141-154
    • /
    • 2018
  • In this study, the bend-buckling strength of the web in longitudinally stiffened plate girder was numerically investigated. The buckling strength of the reinforced web was evaluated through an eigenvalue analysis of the hypothetical model, in which the top and bottom junctions of the web to the flanges were assumed as simple support conditions. Major parameters in the analysis include asymmetrical cross-sectional property, aspect ratio of the web, stiffener locations, and bending rigidity of the stiffeners. The numerical results showed that current AASHTO LRFD specifications (2014) provides the buckling strength from considerably safe side to slightly unsafe side depending on the location of the stiffeners. A modified equation for buckling coefficients was proposed to solve the shortcomings. The bending rigidity requirements of longitudinal stiffeners stipulated in AASHTO were also investigated. It is desirable to increase the rigidity of the stiffeners when the aspect ratio is less than 1.0.

보와 아치의 좌굴강도에 관한 연구의 필요성 (The Need for Research about Buckling Strength of Arch and Beam)

  • 임남형;이진옥;류효진;이우철;구소연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2007
  • In current specification, modification factor(B) for web-tapered beam is used to account for the stress gradient and the restraining effect for adjacent spans. However, because these effects are considered together in modification factor, this paper revaluate the accuracy of the modification factor used in current specification. Also this paper investigate the flexural torsional buckling strength of laterally fixed thin-walled arch with doubly symmetric section using the analytical and numerical method. From this investigate the concept of effective length to consider the out-of-plane boundary condition for straight column or beam is not applicate for the flexural-torsional buckling of laterally fixed arches.

  • PDF

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects

  • Becheri, Tawfiq;Amara, Khaled;Bouazza, Mokhtar;Benseddiq, Noureddine
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1347-1368
    • /
    • 2016
  • In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature effects is presented. The equilibrium equations are derived according to the refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in the literature.

Bending and buckling of a rectangular porous plate

  • Magnucki, K.;Malinowski, M.;Kasprzak, J.
    • Steel and Composite Structures
    • /
    • 제6권4호
    • /
    • pp.319-333
    • /
    • 2006
  • A rectangular plate made of a porous material is the subject of the work. Its mechanical properties vary continuously on the thickness of a plate. A mathematical model of this plate, which bases on nonlinear displacement functions taking into account shearing deformations, is presented. The assumed displacement field, linear geometrical and physical relationships permit to describe the total potential energy of a plate. Using the principle of stationarity of the total potential energy the set of five equilibrium equations for transversely and in-plane loaded plates is obtained. The derived equations are used for solving a problem of a bending simply supported plate loaded with transverse pressure. Moreover, the critical load of a bi-axially in-plane compressed plate is found. In both cases influence of parameters on obtained solutions such as a porosity coefficient or thickness ratio is analysed. In order to compare analytical results a finite element model of a porous plate is built using system ANSYS. Obtained numerical results are in agreement with analytical ones.

Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium

  • Barzoki, Ali Akbar Mosallaie;Loghman, Abbas;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.497-517
    • /
    • 2015
  • In this study, nonlocal nonlinear buckling analysis of embedded polymeric temperature-dependent microplates resting on an elastic matrix as orthotropic temperature-dependent elastomeric medium is investigated. The microplate is reinforced by single-walled carbon nanotubes (SWCNTs) in which the equivalent material properties nanocomposite are estimated based on the rule of mixture. For the carbon-nanotube reinforced composite (CNTRC) plate, both cases of uniform distribution (UD) and functionally graded (FG) distribution patterns of SWCNT reinforcements are considered. The small size effects of microplate are considered based on Eringen's nonlocal theory. Based on orthotropic Mindlin plate theory along with von K$\acute{a}$rm$\acute{a}$n geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the buckling load of system. The effects of different parameters such as nonlocal parameters, volume fractions of SWCNTs, distribution type of SWCNTs in polymer, elastomeric medium, aspect ratio, boundary condition, orientation of foundation orthtotropy direction and temperature are considered on the nonlinear buckling of the microplate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the buckling load.

Local buckling of thin and moderately thick variable thickness viscoelastic composite plates

  • Jafari, Nasrin;Azhari, Mojtaba;Heidarpour, Amin
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.783-800
    • /
    • 2011
  • This paper addresses the finite strip formulations for the stability analysis of viscoelastic composite plates with variable thickness in the transverse direction, which are subjected to in-plane forces. While the finite strip method is fairly well-known in the buckling analysis, hitherto its direct application to the buckling of viscoelastic composite plates with variable thickness has not been investigated. The equations governing the stiffness and the geometry matrices of the composite plate are solved in the time domain using both the higher-order shear deformation theory and the method of effective moduli. These matrices are then assembled so that the global stiffness and geometry matrices of a moderately thick rectangular plate are formed which lead to an eigenvalue problem that is solved to determine the magnitude of critical buckling load for the viscoelastic plate. The accuracy of the proposed model is verified against the results which have been reported elsewhere whilst a comprehensive parametric study is presented to show the effects of viscoelasticity parameters, boundary conditions as well as combined bending and compression loads on the critical buckling load of thin and moderately thick viscoelastic composite plates.