• 제목/요약/키워드: In-Plane Buckling

검색결과 329건 처리시간 0.023초

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.567-578
    • /
    • 2020
  • Based on third-order shear deformation shell theory, the present paper investigates post-buckling properties of eccentrically stiffened metal foam curved shells/panels having initial geometric imperfectness. Metal foam is considered as porous material with uniform and non-uniform models. The single-curve porous shell is subjected to in-plane compressive loads leading to post-critical stability in nonlinear regime. Via an analytical trend and employing Airy stress function, the nonlinear governing equations have been solved for calculating the post-buckling loads of stiffened geometrically imperfect metal foam curved shell. New findings display the emphasis of porosity distributions, geometrical imperfectness, foundation factors, stiffeners and geometrical parameters on post-buckling properties of porous curved shells/panels.

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.

면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해 (Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges)

  • 심현주;우하영;강재훈
    • 한국공간구조학회논문집
    • /
    • 제6권4호
    • /
    • pp.81-92
    • /
    • 2006
  • 본 연구는 순수 면내모멘트를 발생시키는 선형적으로 변하는 수직응력을 받고 있는 단순지지된 마주보는 두 모서리와 자유경계를 가지는 직사각형 판의 자유진동과 좌굴의 엄밀해를 구하였다. 정현적으로 가정된 하중방향(x)으로의 변위함수는 단순지지 경계조건을 만족시키며, 평판을 지배하는 편미분 운동방정식 을 y 방향으로의 변계수를 갖는 상미분방정식으로 만든다. Frobenius법을 통하여, y방향으로의 멱급수를 가정하면 이 식을 엄밀하게 풀 수 있으며, 그 식의 합당한 계수를 구할 수 있다. 자유경계조건을 y=0과 b에 적용하면, 고유진동수와 임계좌굴모멘트를 구할 수 있는 4차의 특성행렬식이 만들어진다. 본 논문에서는 이 급수해의 수렴성이 면밀히 조사되었으며, 임계 좌굴모멘트의 수치결과와 모드형상이 주어진다. 상대적으로 정확도가 떨어지는 1차원적인 보 이론으로 구한 결과치와의 비교연구가 이루어진다. 또한 자유진동수와 모드형상 주어진다. 프와송비(v)의 변화에 따른 좌굴모멘트와 고유진동수의 변화가 도표로 주어진다.

  • PDF

지지단 보강재의 뒤틀림을 고려한 면내휨을 받는 탄성지지 보강판의 좌굴해석 (Buckling Analysis of Stiffened Plates with Elastic Supports Subjected to In-Plane Bending Moment Considering Warping of End Stiffeners)

  • 이용수
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.135-148
    • /
    • 1997
  • 본 논문은 면내휨을 받는 2변 탄성지지 2변 단순지지 보강장방형판에 대한 유한요소법을 이용하고, 비보강장방형판에 대해 고전적 해석법에 의해 좌굴해석한 것이다. 4변 단순지지, 2변 단순지지 및 2변 고정 장방형 판에 대해 기존해와 고전적 해석해 및 유한요소해을 비교하여 고전적 해석방법 및 유한요소법의 신뢰도를 입증하였다. 장방형 보강재의 뒤틀림 강성은 무시될 수 있으므로 탄성지지변의 보강재는 뒤틀림의 영향을 파악하기 위해 I형을 사용하였다. 탄성지지변을 갖는 장방형 판의 좌굴강도가 비틀림 강성 및 뒤틀림 강성에 따라 유한요소법 및 고전적 해석법에 의해 계산되고 비교되었다. 판의 지지변 사이에 보강재가 있는 경우 4변 단순지지, 2변 단순지지 및 2변 고정 보강장방형판에 대해 유한요소법에 의한 좌굴강도는 장방형판요소와 비틀림 및 뒤틀림을 고려한 보요소의 강성매트릭스를 조합하여 고유치 문제를 풀므로써 계산될 수 있다. 유한요소법에 의해 지지변 사이의 장방형 보강재 위치와 지지변 상의 I형 보강재의 비틀림(J) 및 뒤틀림 상수 (I/sub W/)에 따른 보강장방형판의 좌굴강도를 구하여 비교하고 효율적인 보강재의 위치를 결정하였다.

  • PDF

In-Plane Stability of Concrete-Filled Steel Tubular Parabolic Truss Arches

  • Liu, Changyong;Hu, Qing;Wang, Yuyin;Zhang, Sumei
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1306-1317
    • /
    • 2018
  • For determining the in-plane buckling resistance of a concrete-filled steel tubular (CFST) arch, the current technical code GB50923-2013 specifies the use of an equivalent beam-column method which ignores the effect of rise-to-span ratio. This may induce a gap between the calculated result and actual stability capacity. In this study, a FE model is used to predict the buckling behavior of CFST truss arches subjected to uniformly distributed loads. The influence of rise-to-span ratio on the capacity of truss arches is investigated, and it is found that the stability capacity reduces as rise-to-span ratio declines. Besides, the calculations of equivalent slenderness ratio for different truss sections are made to consider the effect of shear deformation. Moreover, based on FE results, a new design equation is proposed to predict the in-plane strength of CFST parabolic truss arches under uniformly distributed loads.

Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel

  • Bhagata, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.543-567
    • /
    • 2016
  • This study attempts to address the buckling and free vibration characteristics of an isotropic cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element analysis has been used in the present study. The approach involves three parts, in the first part non-uniform temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis are carried out to compute critical buckling temperature as well as natural frequencies and associated mode shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane boundary constraints are considered. The relation between buckling temperature under uniform and non-uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature variation field influences the fundamental buckling mode shape significantly. Further, it is observed that natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the intensity of the heat source is high and structural stiffness is low.

Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers

  • Lei, Zuxiang;Zhang, Yang
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, the effect of matrix cracks on the buckling of a hybrid laminated plate is investigated. The plate is composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Different distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane, and the distribution of cracks is assumed statistically homogeneous corresponding to an average crack density. The first-order shear deformation theory (FSDT) is employed to incorporate the effects of rotary inertia and transverse shear deformation, and the meshless kp-Ritz method is used to obtain the buckling solutions. Detailed parametric studies are conducted to investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on buckling behaviors of hybrid laminated plates containing CNTR-FG layers.

계면균열을 갖는 반무한체에 접합된 직교이방성 층의 좌굴 (Buckling of an Orthotropic Layer Bonded to a Half-Space with an Interface Crack)

  • 정경문;범현규
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.95-103
    • /
    • 2001
  • The buckling of an orthotropic layer bonded to an orthotropic half-space with an interface crack subjected to compressive load under plane strain is analyzed. General solution to the stability equations describing the buckling behavior of both the layer and the half-space is expressed in terms of displacement functions. The displacement functions are represented by the solution of Cauchy-type singular integral equations, which are numerically solved. Numerical results of the critical buckling loads are presented fur various geometric parameters and material properties of both the layer and half-space.

  • PDF