• Title/Summary/Keyword: In-Flight Calibration

Search Result 70, Processing Time 0.027 seconds

Development of Flight Control System and Troubleshooting on Flight Test of a Tilt-Rotor Unmanned Aerial Vehicle

  • Kang, Youngshin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.120-131
    • /
    • 2016
  • The full results of troubleshooting process related to the flight control system of a tilt-rotor type UAV in the flight tests are described. Flight tests were conducted in helicopter, conversion, and airplane modes. The vehicle was flown using automatic functions, which include speed-hold, altitude-hold, heading-hold, guidance modes, as well as automatic take-off and landing. Many unexpected problems occurred during the envelope expansion tests which were mostly under those automatic functions. The anomalies in helicopter mode include vortex ring state (VRS), long delay in the automatic take-off, and the initial overshoot in the automatic landing. In contrast, the anomalies in conversion mode are untrimmed AOS oscillation and the calibration errors of the air data sensors. The problems of low damping in rotor speed and roll rate responses are found in airplane mode. Once all of the known problems had been solved, the vehicle in airplane mode gradually reached the maximum design speed of 440km/h at the operation altitude of 3km. This paper also presents a comprehensive detailing of the control systems of the tilt-rotor unmanned air vehicle (UAV).

A Study on Dispersion Analysis and Calibration of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체로켓엔진의 성능분산해석과 엔진성능보정)

  • Nam, Chang-Ho;Kim, Seung-Han;Kim, Cheul-Woong;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.120-127
    • /
    • 2007
  • Performance dispersion in the engine should be considered to predict the flight accuracy of a launch vehicle. A dispersion estimation method was presented with a LOx/Kerosene gas generator cycle engine. The orifices in the propellant supply lines in the engine were assumed to be used for calibration of the performance and the required pressure drops were acquired. The dispersions after calibration were quantified also.

  • PDF

Energy Calibration for Neutron Capture Resonance of Natural Sm by Using 46-MeV Electron Linear Accelerator

  • Lee, Jae-Hong;Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.2
    • /
    • pp.31-35
    • /
    • 2007
  • Energy calibration is important to identify accurate neutron capture resonance energy in the neutron TOF (Time-of-Flight) experiment. In present study, the accurate neutron capture resonance energies of natural Sm were measured by using a 46-MeV electron linear accelerator (linac) at the Research Reactor Institute, Kyoto University(KURRI). The BGO spectrometer were adopted for measurement the prompt capture gamma-ray of the sample. To obtain energy calibration curve, resonance energy of a gold sample used as standard resonance energy Mughabghab's data (From neutron resonance parameters data). Previous data (by Mughabghab) of natural Sm sample have been compared with the present result.

  • PDF

Calibration of a Five-Hole Multi-Function Probe for Helicopter Air Data Sensors

  • Kim, Sung-Hyun;Kang, Young-Jin;Myong, Rho-Shin;Cho, Tae-Hwan;Park, Young-Min;Choi, In-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.43-51
    • /
    • 2009
  • In the flight of air vehicles, accurate air data information is required to control them effectively. Especially, helicopters are often put in drastic motion involved with high angle of attacks in order to perform difficult missions. Among various sensors, the multi function probe (MFP) has been used in the present study mainly owing to its advantages in structural simplicity and capability of providing various information such as static and total pressure, speed, and pitch and yaw angles. In this study, a five-hole multi-function probe (FHMFP) is developed and its calibration is conducted using multiple regressions. In this work a calibration study on the FHMFP, an air data sensor for helicopters, is reported. It is shown that the pitch and yaw angles' accuracy of calibration is ${\pm}0.91^{\circ}$ at a cone angle of $0^{\circ}{\sim}30^{\circ}$ and ${\pm}2.0^{\circ}$ at $30^{\circ}{\sim}43^{\circ}$, respectively, which is summarized in table 3.

AOCS On-orbit Calibration for High Agility Imaging LEO Satellite (고기동 영상촬영 저궤도 위성 자세제어계 궤도상 보정)

  • Yoon, Hyungjoo;Park, Keun Joo;Yim, Jo Ryeong;Choi, Hong-Taek;Seo, Doo Chun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • A fast maneuvering LEO satellite producing high resolution images was developed by Korea Aerospace Research Institute and launched successfully. To achieve accurate pointing and stringent pointing stability, the attitude orbit control subsystem implements high performance star trackers and gyroscopes. In addition, series of on-orbit calibration need to be performed to compensate mainly misalignment errors due to launch shock and on-orbit thermal environment. In this paper, the on-orbit calibration approach is described with the performance enhancement result through flight data analysis.

DEVELOPMENT OF MAGNETOMETER DIGITAL CIRCUIT FOR KSR-3 ROCKET AND ANALYTICAL STUDY ON CALIBRATION RESULT (KSR-3 과학 로켓용 자력계 디지털 회로 개발 및 검교정시험 결과 분석 연구)

  • 이은석;장민환;황승현;손대락;이동훈;김선미;이선민
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.293-304
    • /
    • 2002
  • This paper describes the re-design and the calibration results of the MAG digital circuit onboard the KSR-3. We enhanced the sampling rate of magnetometer data. Also, we reduced noise and increased authoritativeness of data. We could confirm that AIM resolution was decreased less than InT of analog calibration by a digital calibration of magnetometer. Therefore, we used numerical-program to correct this problem. As a result, we could calculate correction and error of data. These corrections will be applied to magnetometer data after the launch of KSR-3.

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.

PRODUCT10N OF KSR-III AIRGLOW PHOTOMETERS TO MEASURE MUV AIRGLOWS OF THE UPPER ATMOSPHERE ABOVE THE KOREAN PENINSULAR (한반도 상공의 고층대기 중간 자외선 대기광 측정을 위한 KSR-III 대기광도계 제작)

  • Oh, T.H.;Park, K.C.;Kim, Y.H.;Yi, Y.;Kim, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.305-318
    • /
    • 2002
  • We have constructed two flight models of airglow photometer system (AGP) to be onboard Korea Sounding Rocket-III (KSR-III) for detection of MUV dayglow above the Korean peninsular. The AGP system is designed to detect dayglow emissions of OI 2972${\AA}$, $N_2$ VK(0,6) 2780${\AA}$, $N_2$ 2PG 3150${\AA}$ and background 3070${\AA}$ toward the horizon at altitudes between 100 km and 300 km. The AGP system consists of a photometer body, a baffle an electronic control unit and a battery unit. The MUV dayglow emissions enter through a narrow band interference filter and focusing lens of the photometer, which contains an ultraviolet sensitive photomultiplier tube. The photometer is equipped with an in-flight calibration light source on a circular plane that will rotate at the rocket's apogee. A bane tube is installed at the entry of the photometer in order to block strong scattering lights from the lower atmosphere. We have carried out laboratory measurements of sensitivity and in-flight calibration light source for the AGP flight models. Although absolute sensitivities of the AGP flight models could not be determined in the country, relative sensitivities among channels are well measured so that observation data during rocket flight in the future can be analyzed with confidence.

A Robust Depth Map Upsampling Against Camera Calibration Errors (카메라 보정 오류에 강건한 깊이맵 업샘플링 기술)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.8-17
    • /
    • 2011
  • Recently, fusion camera systems that consist of depth sensors and color cameras have been widely developed with the advent of a new type of sensor, time-of-flight (TOF) depth sensor. The physical limitation of depth sensors usually generates low resolution images compared to corresponding color images. Therefore, the pre-processing module, such as camera calibration, three dimensional warping, and hole filling, is necessary to generate the high resolution depth map that is placed in the image plane of the color image. However, the result of the pre-processing step is usually inaccurate due to errors from the camera calibration and the depth measurement. Therefore, in this paper, we present a depth map upsampling method robust these errors. First, the confidence of the measured depth value is estimated by the interrelation between the color image and the pre-upsampled depth map. Then, the detailed depth map can be generated by the modified kernel regression method which exclude depth values having low confidence. Our proposed algorithm guarantees the high quality result in the presence of the camera calibration errors. Experimental comparison with other data fusion techniques shows the superiority of our proposed method.

A Study on the Calibration of Simulation Characteristics of Live-Virtual Simulator System : To Impose Restrictions on a Maneuverability of a Simulated Aircraft Due to Pilot's G-force (Live-Virtual 시뮬레이터 모의특성 보정에 관한 연구 : 중력가속도에 따른 조종사의 기동제한 특성 기반)

  • Park, Myunghwan;Yoo, Seunghoon;Seol, Hyeonju;Kim, Cheonyoung;Hong, Youngseok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.212-217
    • /
    • 2014
  • Recently, Korea Air Force has been facing a lot of problems in its pilot training system such as training time shortage due to the expensive gas price, noise pollution and difficulties in finding airspace for training. To tackle these problems, a new training system (called L-V training system) using both aircraft and its simulator has been suggested. In the system, a data link is established between aircraft and simulator to exchange their flight information. Using the flight information of simulator, aircraft can perform various air missions with or against imaginary aircraft (i.e., simulator). For this system, it is crucially important that fair fighting condition has to be guaranteed between aircraft and simulator. In this paper, we suggested an approach to impose a maneuvering restriction to simulator in order to provide fair fighting condition between aircraft and simulator.