• 제목/요약/키워드: In-Depth analysis

검색결과 8,177건 처리시간 0.04초

교각세굴심 산정 공식의 통계적 특성 (Statistical Characteristics of Pier-Scour Equations for Scour Depth Calculation)

  • 이호진;장형준;허태영
    • 한국방재안전학회논문집
    • /
    • 제12권3호
    • /
    • pp.51-57
    • /
    • 2019
  • 최근 이상기후로 인한 집중호우, 대규모 태풍 등의 증가로 국지성 집중호우의 발생빈도가 높아지고 있다. 이로 인하여 국내 중소규모 하천의 유량이 급격하게 증가함에 따라 교량의 안전성에 영향을 미치고 있으며, 세굴에 대한 위험성도 증가하고 있다. 그러나 국내 교량건설기술에서는 교각 세굴심을 산정하기 위하여 해외의 교각 세굴심 산정식을 활용하고 있어 국내 하천의 유역특성을 반영하지 못하고 있는 실정이다. 따라서 본 연구는 세굴현상에 따른 교량피해를 예방하기 위한 기초연구로써, 수리모형실험을 통해 측정된 실험자료와 국내에 적용되고 있는 세굴 산정식들간의 비교 분석을 수행하였다. 또한 실험자료와 세굴 산정식의 통계분석을 통하여 Coleman(1971) 공식이 가장 우수하게 세굴심을 산정하고 있는 것을 확인하였다. 본 연구의 결과는 향후 하천설계 및 교량설계에 있어 보다 정확한 교각 세굴심을 산정하는데 활용 될 수 있을 것으로 기대된다.

학교건물에 대한 홍수 침수심별 손상함수 개발에 관한 연구 (A study on development of flood depth-damage functions focused on school buildings)

  • 이창희;김상호;황신범;김길호
    • 한국수자원학회논문집
    • /
    • 제50권8호
    • /
    • pp.513-520
    • /
    • 2017
  • 홍수피해저감효과를 분석하기 위해서는 수리 수문학적 분석을 통한 피해예상지역과 침수심을 분석함과 함께 피해예상지역에 대한 피해액 추정이 가능해야 한다. 홍수피해액의 추정은 일반적으로 건물의 구조물 및 내용물에 대해서 침수심의 변화에 따라 분석된다. 본 연구에서는 실제 피해지역의 자료들을 토대로 학교건물에 대한 침수심별 손상함수를 개발하고 적용하였다. 그리고 학교건물에 대한 손상함수의 개발절차, 침수심별 손상함수의 보완과정을 제시하였고, 그리고 손상함수의 적용결과에 대한 기존 기법과도 비교하여 검증하였다. 본 연구를 통해 손상함수를 개발하는 과정과 개발된 침수심별 손상률 그리고 함수의 적용과정은 향후 피해규모에 따른 홍수피해액 추정을 가능하게 하여 홍수피해저감 대책에 대한 비용대비 효과분석 수행에 활용될 수 있을 것으로 기대된다.

샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향 (Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System)

  • 정연주;정광회;김병석;박성수;황일선
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

Surface and Interface Analysis with Medium Energy Ion Scattering Spectroscoppy

  • Moon, Dae-Wom
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.129-129
    • /
    • 1998
  • Most of the surface/interface analysis tools have limited depth profiling c capability in terms of the profiling range and the depth resolution. However, M MEIS can profile the surface and subsurface composition and structure q quantitatively and non-destructively with atomic layer depth resolution. I In this presentation, the MEIS system developed at KRISS will be briefly d described with an introduction on the principle of MEIS. Recent MEIS r results on the surface and interface composition and structural change due to i ion bombardment will be presented for preferential sputtering of T:없Os and d damage depth profiles of SHooD, Pt(l11), and Cu(l1D due to Ar+ ion b bombardment. Direct observation of strained Si lattices and its distribution i in the SHool)-SiCh interface and the initial stage of Co growth on Pt(l11) w will be reported. H surfactant effects on epitaxial growth of Ge on Si(ooD w will be discussed with STM results from SND.

  • PDF

심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구 (An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method)

  • 박춘식;송지원
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.35-44
    • /
    • 2020
  • 연약지반 개량 공법 중 심층혼합공법에 대한 설계 기법으로는 복합지반으로 해석하는 방법과 말뚝지반으로 해석하는 방법이 있다. 그러나 이러한 해석에 대한 비교 연구는 부족한 실정으로 설계 시 해석 기준을 명확하게 정의 내리는 것에 어려움이 있다. 본 연구에서는 2차원 및 3차원 해석을 통해 성토 높이와 연약지반의 심도, 보강구간의 치환율을 변화시키며 각 조건별로 복합지반과 말뚝지반을 가정하여 해석하였다. 그 결과 최저 개량 심도는 3차원 해석에 비해 2차원 해석 결과가 6.85~9.08% 더 깊은 결과를 도출하였다. 또한 말뚝지반 해석의 경우 복합지반 해석에 비해 개량 심도는 12.22~14.45% 더 깊은 것을 확인하였다. 이 결과를 통하여 보다 정확한 설계를 위해서는 2차원 해석보다는 3차원 해석을 실시해야 하고, 경제적인 설계를 위해서는 복합지반으로 해석해야 하며, 안정적인 설계를 위해서는 말뚝지반 해석을 실시해야 된다고 판단된다.

최적 양식환경을 위한 수조식 양식장내의 유동특성에 관한 연구 (Study on fluid flow characteristics of aquarium for optimum environment)

  • 정효민;정한식
    • 설비공학논문집
    • /
    • 제10권1호
    • /
    • pp.108-117
    • /
    • 1998
  • This study was performed to analyze the fluid flow characteristics and the temperature distribution of the aquarium for fish breeding. In this study, the finite volume method and turbulence k-$\varepsilon$ model with the SIMPLE computational algorithm are used to study the water flow in the aquarium. The calculation parameters are the circulating flow rate and the basin depth, and the experiments were carried out for the water flow visualization This numerical analysis gives reasonable velocity distributions in good agreement with the experimental data. As the results of the three dimmentional simulations, the sectional mean velocity increased as the sectional mean temperature increases for constant basin depth, and the mean velocity increased more rapidly for small basin depth than that of large basin depth, The mean velocity and temperature can be expressed as the function of the circulating flow rates and the basin depth.

  • PDF

Focal Depth Factors in the PSH Analysis

  • Kim, Jun-Kyoung
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.83-86
    • /
    • 1998
  • The results from the Individual Plant Examination of External Event of Yonggwyang nuclear power plants, unit 3 & 4, in Korea have shown that the high degree of diversities of the experts' opinions on seismicity and attenuation models is su, pp.sed to be generic cause of uncertainty of APEs(annual exceedance probability) in the PAHA(probabilistic seismic hazard analysis). This study investigated the sensitivity of the focal depth, which is one of the most uncertain seismicity parameters in Korea, Significant differences in resultant values of annual exceedance probabilities and much more symmetrical shape of the resultant PDFs(probability density functions), in case of consideration of focal depth, are found. These two results suggest that, even for the same seismic input data set including the seismicity models and ground motion attenuation models, to consider focal depth additionally for probabilistic seismic hazard analysis evaluation makes significant influence on the distributions of uncertainties and probabilities of exceedance per year for the whole ranges of seismic hazard levels. These facts suggest that it is necessary to derive focal depth parameter more effectively from the historical and instrumental documents on earthquake phenomena in Koran Peninsula for the future study of PSHA.

  • PDF

티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링 (Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium)

  • 박승섭;김화영;안중환
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

마이크로 라만 및 XPS를 이용한 CIGS 박막의 두께방향 상분석 비교 (Comparison of Depth Profiles of CIGS Thin Film by Micro-Raman and XPS)

  • 백근열;전찬욱
    • Current Photovoltaic Research
    • /
    • 제4권1호
    • /
    • pp.21-24
    • /
    • 2016
  • Chalcopyrite based (CIGS) thin films have considered to be a promising candidates for industrial applications. The growth of quality CIGS thin films without secondary phases is very important for further efficiency improvements. But, the identification of complex secondary phases present in the entire film is crucial issue due to the lack of powerful characterization tools. Even though X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and normal Raman spectroscopy provide the information about the secondary phases, they provide insufficient information because of their resolution problem and complexity in analyzation. Among the above tools, a normal Raman spectroscopy is better for analysis of secondary phases. However, Raman signal provide the information in 300 nm depth of film even the thickness of film is > $1{\mu}m$. For this reason, the information from Raman spectroscopy can't represent the properties of whole film. In this regard, the authors introduce a new way for identification of secondary phases in CIGS film using depth Raman analysis. The CIGS thin films were prepared using DC-sputtering followed by selenization process in 10 min time under $1{\times}10^{-3}torr$ pressure. As-prepared films were polished using a dimple grinder which expanded the $2{\mu}m$ thick films into about 1mm that is more than enough to resolve the depth distribution. Raman analysis indicated that the CIGS film showed different secondary phases such as, $CuIn_3Se_5$, $CuInSe_2$, InSe and CuSe, presented in different depths of the film whereas XPS gave complex information about the phases. Therefore, the present work emphasized that the Raman depth profile tool is more efficient for identification of secondary phases in CIGS thin film.

CPT-based lateral displacement analysis using p-y method for offshore mono-piles in clays

  • Kim, Garam;Park, Donggyu;Kyung, Doohyun;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • 제7권4호
    • /
    • pp.459-475
    • /
    • 2014
  • In this study, a CPT-based p-y analysis method was proposed for the displacement analysis of laterally loaded piles. Key consideration was the continuous soil profiling capability of CPT and cone resistance profiles that do not require artificial assumption or simplification for input parameter selection. The focus is on the application into offshore mono-piles embedded in clays. The correlations of p-y function components to the effective cone resistance were proposed, which can fully utilize CPT measurements. A case example was selected from the literature and used to validate the proposed method. Various parametric studies were performed to examine the effectiveness of the proposed method and investigate the effect of property profile and its depth resolution on the p-y analysis. It was found that the calculation could be largely misleading if wrongly interpreted sub-layer condition or inappropriate resolution of input soil profile was involved in the analyses. It was also found that there is a significant influence depth that dominates overall load response of pile. The soil profile and properties within this depth range affect most significantly calculated load responses, confirming that the soil profile within this depth range should be identified in more detail.