• Title/Summary/Keyword: In vivo

Search Result 8,010, Processing Time 0.037 seconds

Characterization of ovarian culture in vitro and sex steroids in vivo by recombinant eel gonadotropin treatments in the eel Anguilla japonica

  • Kim, Dae-Geun;Kim, Jung-Hyun;Baek, Hea-Ja;Kim, Shin-Kwon;Min, Kwan-Sik;Kim, Dae-Jung
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • In the present study, we investigated the effects of recombinant eel gonadotropins (rec-GTHs) on maturation induction in immature ovarian culture in vitro and sex steroid hormones in vivo in the Japanese eel Anguilla japonica. To study the in vitro effects of rec-GTHs on estradiol-17β (E2) production in immature ovarian tissues, ovarian tissues were incubated with different doses of rec-follicle-stimulating hormone (rec-FSH) or rec-luteinizing hormone (rec-LH). The results revealed that the E2 levels in the rec-FSH (0.1, 0.5, or 1 ㎍/mL)- and rec-LH (0.1 or 0.5 ㎍/mL)-treated groups were significantly higher than those in the female eels from the control group. Furthermore, to investigate the in vivo effects of rec-GTHs on the gonadosomatic index (GSI) and plasma sex steroid hormone levels, the eels were injected intraperitoneally with eel's ringer (control), salmon pituitary extract (SPE; for female eels), human chorionic gonadotropin (hCG; for male eels), rec-FSH, rec-LH, and rec-FSH + rec-LH once a week. The results revealed that except for the SPE and the hCG groups, none of the groups exhibited a significant difference in GSI values. However, in vivo plasma E2 levels increased at the end of 4 weeks after rec-FSH treatment in female eels. Based on these results, it is suggested that rec-GTHs may have a positive effect on sexual maturation in female eels; however, further studies on complementary rec-protein production systems and additional glycosylation of rec-hormones are needed to elucidate hormone bioactivity in vivo and in vitro.

Effects of Ginsenoside $Rg_1$ on Neural Progenitors Proliferation in Vitro and in Vivo

  • Shen Li-Hong
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.522-530
    • /
    • 2002
  • We have already known, neural progenitor cells exist not only in the developing brain, but in certain spots in adult CNS in mammals, so it will be of great value to find out some compounds which can interfere these cells proliferation ability. In this research, we observed that ginsenoside $Rg_1$ can not only enhance neural progenitors' proliferation ability in vitro, but increase neurogenesis in adult mouse dentate gyrus in vivo. Firstly, we set up neural progenitor cells' culture system from embryonic rats' hippocampus and prove their feature through immunocytochemistry. Then by using MTT assay, we found that when growing with ginsenoside $Rg_1(0.5\~2.5{\mu}mol/l)$, the progenitor cells' survival rate nearly doubled, furthermore, we proved that this increase was due to the increment of cell proliferation through $^3H-thimidine$ incorporation assay, hence, we drew the first conclusion: ginsenoside Rg1 has the ability to stimulate neural progenitor cells' proliferation in vitro; in order to observe this compound's effect in vivo, we devised the following experiment: after administering ginsenoside Rg1 (5, 10 mg/kg, once a day) intraperitoneally for two weeks, we examine the number of BrdU positive cells in the dentate gyrus of mice, and found that Rg1 could increase the number of proliferation cells significantly in vivo. From these studies, we are quite sure about Rg1's effects on the proliferation ability of neural progenitor cells both in vitro and in vivo, certain targets of the compound and its underlying mechanisms are in progress.

  • PDF

Comparative evaluation of nutritional values in different forage sources using in vitro and in vivo rumen fermentation in Hanwoo cattle

  • Lee, Hu Seong;Lee, Sung Dae;Lee, Seul;Sun, Sangsoo;Kim, Minseok;Choi, Hyuck;Lee, Yookyung;Baek, Youl-Chang
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.941-949
    • /
    • 2020
  • This study evaluated the nutritional value of Italian ryegrass (IRG) as a forage source for Hanwoo. The nutritional value of IRG was assessed and compared to that of rice straw, oat hay, and timothy hay using two different methods: 1) in vitro ruminal fermentation 2) in vivo total tract digestibility. In vitro DM digestibility was lower in rice straw compared to the other three forage sources after both 24 and 48 h of incubation (p < 0.01). Among the four forage sources, IRG had a higher NH3-N concentration after both 24 and 48 h of incubation (p < 0.01). In the in vivo digestibility trials, four different substrates were used: 1) 80% concentrate with 20% rice straw, 2) 80% concentrate with 20% oat hay, 3) 80% concentrate with 20% IRG, and 4) 80% concentrate with 20% timothy hay. The dry matter, crude protein, non-fiber carbohydrate, and detergent fiber digestibility were the greatest in the C80-IRG20 among the four forage groups. In summary, IRG had a similar level of energy efficiency compared to oat hay and timothy hay. Furthermore, the result of the chemical composition analysis showing a higher ammonia concentration in the in vitro fermentation experiment and the high protein digestibility in the in vivo experiment indicate that IRG is a good source of protein compared to oat hay and timothy hay.

In vivo Comet Assay on Flounder and Clam Exposed to BaP and TBT (BaP 및 TBT에 노출된 넙치와 개조개의 in vivo Comet assay)

  • Kim, So-Jung;Chung, Young-Jae;Lee, Taek-Kyun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • The comet assay, also called single-cell electrophoresis (SCGE) assay, is a potential sensitive monitoring tool for DNA damage in cells. The primary objective of this study was to use comet assay to ascertain if the blood cells of flounder (Pleuronichthys olivaceus) and muscle cells of clam (Saxidomus purpurata) are suitable for genotoxicity screening. This was achieved by initially exposing blood and muscle cells under in vitro conditions to the reference genotoxin hydrogen peroxide ($H_2O_2$); strong correlation between $H_2O_2$ concentration and comet values were found. Subsequently, the identification of DNA damage in isolated cells from flounder and clam was performed under in vivo exposure to benzo(a)pyrene (BaP) and tributyltin (TBT). Flounder and clam were exposed to different concentrations (1, 10, 50, 100 ${\mu}g/L$) of BaP or TBT for 4 days. Regardless of treated chemicals, blood cells of flounder were more prone to DNA breakage compared to muscle cells of clam. In conclusion, in vivo genotoxicity of BaP and TBT can be biomonitored using the comet assay. This study suggests that flounder and clam do show potential as mediums for monitoring genotoxic damage by comet assay.

Cecropin Suppresses Human Hepatocellular Carcinoma BEL-7402 Cell Growth and Survival in vivo without Side-Toxicity

  • Jin, Xiao-Bao;Wang, Ying-Jiao;Liang, Lu-Lu;Pu, Qiao-Hong;Shen, Juan;Lu, Xue-Mei;Chu, Fu-Jiang;Zhu, Jia-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5433-5436
    • /
    • 2014
  • Conventional chemotherapy against hepatocellular carcinoma typically causes various side effects. Our previous study showed that cecropin of Musca domestica can induce apoptosis in human hepatocellular carcinoma BEL-7402 cells in vitro. However, whether cecropin inhibits BEL-7402 cell in vivo and the question of possible side effects remained undentified. The present study confirmed tumor-inhibitory effects of cecropin in vivo, and furthermore strongly suggested that cecropin cytotoxicity in BEL-7402 cells in vivo may be mainly derived from its pro-apoptotic action. Specifically, we found that cecropin exerted no obvious side effects in tumor-bearing mice as it had no significant hematoxicity as well as visceral toxicity. Therefore, cecropin may be a potential candidate for further investigation as an antitumor agent against hepatocellular carcinoma.

In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging (Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동)

  • Lee, Jun-Ho;Jung, Nam-Chul;Lee, Eun Gae;Lim, Dae-Seog
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

In vitro and in vivo antibacterial activity of Meliae fructus extract against Helicobacter pylori (Helicobacter pylori에 대한 천련자 추출물의 in vitro와 in vivo 실험에서의 항균활성)

  • Lee, Hyun-A;Kim, Okjin
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.105-113
    • /
    • 2012
  • In this study, a medicinal herbal plant, Meliae fructus, was examined and screened for anti-Helicobacter (H.) pylori activity. Seventy percent ethanol was used for herbal extraction. For anti-H. pylori activity screening, inhibitory zone tests as an in vitro assay and in vivo study using a Mongolian gerbil (Meriones unguiculatus) model were performed. Also, the safety of herbal compounds was evaluated by animal study. As a result of inhibitory zone test, Meliae fructus extract demonstrated strong anti-H. pylori activities. Also, as results of in vivo animal studies, Meliae fructus demonstrated strong therapeutic effects against H. pylori infection according to the criteria of histological examination and rapid urease test. As results of the safety study, after 28 days treatment of the Meliae fructus extract, the animals were not detected any grossly and histological changes. These results demonstrate that it can be successfully cured against H. pylori infection and protected from H. pylori-induced pathology with Meliae fructus. It could be a promising native herbal treatment for patients with gastric complaints including gastric ulcer caused by H. pylori.

In vitro and in vivo application of anti-cotinine antibody and cotinine-conjugated compounds

  • Kim, Hyori;Yoon, Soomin;Chung, Junho
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.130-134
    • /
    • 2014
  • The combination of a high-affinity antibody to a hapten, and hapten-conjugated compounds, can provide an alternative to the direct chemical cross-linking of the antibody and compounds. An optimal hapten for in vitro use is one that is absent in biological systems. For in vivo applications, additional characteristics such as pharmacological safety and physiological inertness would be beneficial. Additionally, methods for cross-linking the hapten to various chemical compounds should be available. Cotinine, a major metabolite of nicotine, is considered advantageous in these aspects. A high-affinity anti-cotinine recombinant antibody has recently become available, and can be converted into various formats, including a bispecific antibody. The bispecific anti-cotinine antibody was successfully applied to immunoblot, enzyme immunoassay, immunoaffinity purification, and pre-targeted in vivo radioimmunoimaging. The anti-cotinine IgG molecule could be complexed with aptamers to form a novel affinity unit, and extended the in vivo half-life of aptamers, opening up the possibility of applying the same strategy to therapeutic peptides and chemical compounds.

Evaluation of the anti-Toxoplasma gondii Activity of Hederagenin in vitro and in vivo

  • Zhang, Run-Hui;Jin, Runhao;Deng, Hao;Shen, Qing-Kun;Quan, Zhe-Shan;Jin, Chun-Mei
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.297-301
    • /
    • 2021
  • Toxoplasma gondii infection is widespread worldwide, not only posing a serious threat to human food safety and animal husbandry, but also endangering human health. The selectivity index was employed to measure anti-T. gondii activity. Hederagenin (HE) exhibited potent anti-T. gondii activity and low cytotoxicity. For this reason, HE was selected for in vivo experiments. HE showed 64.8%±13.1% inhibition for peritoneal tachyzoites in mice, higher than spiramycin 56.8%±6.0%. Biochemical parameters such as alanine aminotransferase, aspartate aminotransferase, glutathione, and malondialdehyde, illustrated that HE was a good inhibitor of T. gondii in vivo. This compound was also effective in relieving T. gondii-induced liver damage. Collectively, it was demonstrated that HE had potential as an anti-T. gondii agent.

Enhancement of Chromosome Aberrations in Lymphocytes of Mice after in Vivo Exposure to Chemicals and in Vitro Challenge with Bleomycin (MNNG 또는 Benzo(a)pyrene 유도 염색체 이상에 미치는 Bleomycin의 효과)

  • Heo, M.Y.;Grady, J.J.;Au, W.W.
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.71-76
    • /
    • 1998
  • Exposure to environmental toxicants can cause cellular problems including the interference of DNA repair processes which may lead to the development of cancer. The existence of toxicant-induced DNA repair abnormality was investigated using mice exposed in vivo to genotoxic chemicals and then challenging their exposed lymphocytes in vitro with bleomycin. The repair of bleomycin-induced DNA damage as estimated by the frequency of chromosome aberrations was determined. Our data indicates that the observed aberration frequencies after in vivo exposure to N-methyl-N'-nitro-N-nitnsoguanidine (MNNG) and in vitro challenge with bleomycin are consistently higher than expected. The enhanced response is not due to the induction of chromosome damage by 25 or 50 mg/kg MNNG since the chemical did not cause chromosome aberrations in lymphocytes of these mice. The observed response after the combined exposure to benzo[a]pyrene (BP) and bleomycin was significantly lower than expected with low in vivo doses of BP (50 mg/kg) and then significantly higher than expected with the high doses (200 mg/kg). We interpret our data to indicate that in vivo exposure to genotoxic agents can cause abnormal DNA repair activities. The response is, however, independent of the clastogenic activities of the inducing chemicals, but dependent upon the inducing agents and on the exposure doses.

  • PDF