• Title/Summary/Keyword: In vitro-matured Oocytes

Search Result 428, Processing Time 0.035 seconds

Transmission of Bovine $\beta-Casein/Human$ Lactoferrin Fusion Gene in Transgenic Cattle

  • Han Yong-Mahn;Koo Deog-Bon;Park Jung-Sun;Kim Young-Hun;Lee Kea-Joung;Lee Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.235-239
    • /
    • 2005
  • This study was conducted to test whether the transgenic cattle pass the transgene to their progeny through germ cells, and whether the transgene is expressed in the mammary gland of ransgenic cows. Two male ransgenic calves were born from IVF-derived embryos injected with bovine $\beta-casein/human$ lactoferrin fusion gene and then grew up to be reproducible. Semen was collected from a transgenic bull after 18 mon of age and then frozen. Bovine oocytes matured in vitro were fertilized with spermatozoa of the transgenic bull and cultured in $50\;{\mu}L$ drops of CRlaa medium supplemented with 3 mg/mL BSA. After 48 h of culture, cleaved embryos were determined for the presence of transgenes by DNA polymerase chain reaction (PCR). Proportion of transgene positives among bovine embryos fertilized with sperm of the transgenic bull was $20.9\%$ (28/134). One of transgenic bulls did not produce transgenic sperm. Out of 34 calves produced from recipient heifers inseminated with semen of the other bull, 3 $(8.8\%)$ were transgenic animals (2 females and 1 male). Thus, one transgenic bull showed a low transmission frequency below Mendelian levels in both the IVF-derived embryos and his progeny. It was demonstrated by Southern blot that copy numbers of the transgene in the transgenic progeny enhanced about 1.8 times as compared to those of the founder bull The results demonstrate that the transgenic bull carrying human lactoferrin gene could pass his transgene to the progeny through germ cells, although he is a germ-line mosaic.

Chromosomal Analysis of Hanwoo Embryos by In Vitro Culture Condition (한우 체외 수정란의 체외 배양 조건에 따른 염색체 분석)

  • Choi, S.H.;Cho, S.R.;Han, M.H.;Kim, H.J.;Choe, C.Y.;Son, D.S.;Chung, Y.G.;Kim, S.K.;Sohn, S.H.
    • Journal of Embryo Transfer
    • /
    • v.22 no.2
    • /
    • pp.137-141
    • /
    • 2007
  • Antioxidants were well known to be essential supplements in the complex media and serve as a reservoir of oxygen. In this study, Hanwoo COCs (cumulus oocytes complexes) were matured and developed in L-cysteine-TCM199 and analyzed metaphase chromosome. Maturation rate of Hanwoo COCs were 73.4%, 94.6% in 0.1% PVA, 0.1 mM L-cysteine, respectively and showed significantly different between the treatments (p<0.05). Blastocyst formation were revealed 20.3%, 10.0% in 5% FBS+TCM199, 0.1 mM L-cysteine+1% BSA, respectively. There were no significant difference among treatment groups. Metaphase chromosome were showed 18.3%, 12.0% in 5% FBS-TCM199, 0.1 mM L-cysteine, respectively and analyzable chromosome were 6.1%, 4.0% and had no differences between the treated groups. In the case of in vitro developmental stages, metaphase chromosome were showed 18.3%, 12.0% in $4{\sim}16$ cells stage, 43.1%, 13.0% in morulae stage and 94.8%, 100.0% in blastocyst stage. These results suggested L-cysteine has beneficial role for in virto maturation and development in Hanwoo COCs.

Effect of Equilibration Time and Cell Stage on the Survival of IVF Bovine Embryos Cryopreserved by Vitrification (한우 체외수정란의 동결보존시 평형시간과 배 발달단계가 생존성에 미치는 영향)

  • 공일근;주영국;이은봉;김용권;박충생
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.7-14
    • /
    • 1994
  • The present experiments on cryopreservation were designed to examine the effects of solution toxicity, equilibration time and cell stages on the post-thaw survival of bovine IVF embryos. The oocytes were matured in vitro(IVM) for 24 hrs. in TCM-199 supplemented with 35 $\mu$g /ml FSH, 10 $\mu$g /ml LH, 1 $\mu$g /ml estradiol-17$\beta$ and granulosa cells at 39$^{\circ}C$ under 5% $CO_2$ in air. They were fertilized in vitro(IVF) by epididymal spermatozoa treated with heparin for 24 hrs., and then the zygotes were co-cultured in vitro(IVC) with bovine oviductal epithelial cells for 7 to 9 days. The bovine IVF embryos were exposed to the EFS solution in one step at room temperature, kept in the EFS solution during different period for toxicity test, vitrified in liquid nitrogen, and thawed rapidly. 1. after the bovine blastocysts were exposed to EFS solution for 2 min. at room temperature and then they were washed in 0.5 M sucrose solution and TCM-199, they were cultured to examined cryoprotectant induced injury during exposure, Most of the embryos(95.0%) developed to reexpanded blastocoels. However, when the exposure time was extended to 5 and 10 min, these development rates dropped dramatically in 5 min. (69.5%) and 10 min. (47.4%), respectively, 2. When the bovine IVF embryos were vitrified in EFS solution after the equilibration for 1 and 2 min. exposure, The embryos to have reexpanded blastocoels following thawing, washing and culture processes were found to he 82.6 and 73.9%, respectively. However, when the exposure time was extended to 3 min, this survival rate dropped to 18.2%. The optimal time for equilibration of bovine IVF blastocysts in EFS solution seemed to he 1~2 min. 3. When the bovine IVF embryos were equilibrated for 1 min. the significantly (P<0. 05) higher post-thaw survival rates were obtained from the embryos of blastocyst stage(81.3%) than morulae stage(5. 1%). The optimal cell stage for viterification with EFS solution proven to he blastocyst stage in bovine IVF embryos. 4. The number of blastomeres of blastocyst stage was examined with nuclear staining with Hoechst 33342 during 7 to 9 days post-insemination. The cell counts of frozen bovine IVF embryos were found significantly(P$\geq$7.5 and those of the fresh embryos 76.6$\geq$7. 1, which were cultured in the sarne period and conditions as frozen embryos.

  • PDF

Characteristics of Semen and Coat Color Distribution of Offsprings Produced by Al in Korean Native Striped Cattle (Bos namadicus Falconer, Chikso) (재래 칡소의 정액 특성 및 인공수정에 의한 송아지 모색 분포)

  • Park, Yeon-Soo;Hwang, Hwan-Sub;Yoo, Jae-Won;Kim, Nam-Wook
    • Reproductive and Developmental Biology
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • This study was conducted to examine the characteristics of fresh and frozen semen, proliferating efficiency by AI, and the coat color of offsprings in Korean Native Striped Cattle (Bos namadicus Falconer, Chikso). Semen were collected from 6 heads of tiger-coated male Chikso. In vitro fertilization (IVF) was conducted with frozen-thawed semen and in vitro matured Korean native brown cattle (general Hanwoo) oocytes. Total 18 heads of Hanwoo and Chikso were inseminated using Chikso semen. Coat colors of total 40 offsprings produced by AI were evaluated. The characteristics of the fresh and frozen-thawed Chikso semen did not differ among individuals. In vitro fertilization rate of Chikso semen was not different from that of general Hanwoo semen. However, developmental rate to the blastocyst stage of IVF embryos was higher in Chikso semen (25.9%) than in general Hanwoo semen (p<0.05). There was no difference in conception rate after AI between Chikso and general Hanwoo. The coat colors of offsprings varied, only 42.5% (17/40 heads) of offsprings had tiger coat color. Futhermore, only 55% of offsprings produced from the tiger-coated recipients had tiger coat color. This result shows that proliferation of Chikso by AI is possible, but further research approaches may be needed to enhance the productivity of tiger-coated Chikso.

Production of Transgenic Cattle by Non-surgical Embryo Transfer (비외과적 수정란 이식에 의한 형질전환 소 생산 기술)

  • Uhm, Sang Jun;Yang, Jung Seok;Lee, Su Min;Joe, So Young;Heo, Young-Tae;Xu, Yong-Nan;Koo, Bon Chul;Cheong, Ki Soo;Kim, Kwang Jae;Kim, Ji Tae;Kim, Nam-Hyung;Ko, Dae-Hwan
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.169-175
    • /
    • 2013
  • Recently, the transgenic animal production technique is very important for the production of bio-parmaceutical as animal bio-reactor system. However, the absence of survival evaluation in vitro produced transgenic embryos has been a problem of the low productivity of transgenic animal because of absent of pre-estimate of pregnancy after transgenic embryos transferred into recipient. Therefore, this study is conducted to improve efficiency of transgenic cattle production by improving the non-surgical embryo transfer (ET) method. Transgenic bovine embryos were produced by injection of feline immunodeficiency virus enhanced green fluorescent protein (FIV-EGFP) lentiviral vector into perivitelline space of in vitro matured MII stage oocytes, and then in vitro fertilization (IVF) was occured. Normal IVF and EGFP expressing blastocysts were transferred into recipients. Results indicated that 2 expanded blastocysts (34.7%) transferred group showed significantly (P<0.05) higher pregnancy rate than 1 expanded blastocyst (26.8%) transferred group. In case of parity of recipient, ET to heifer (34.9%) showed significantly (P<0.05) higher pregnancy rate than ET to multiparous recipient (21.2%). However, there are no significant differences of pregnancy rate between natural induced estrus and artificial induced estrus groups. Significantly (P<0.05) higher pregnancy rate was obtained from recipient group which have normal corpus luteum with crown group (34.8%) than normal corpus luteum without crown (13.6%). Additionally, treatment of $100{\mu}g$ Gn-RH injection to recipient group (38.6%) 1 day before ET significantly (P<0.05) increase pregnancy rate than non- Gn-RH injection to recipient group (38.6%). We also transferred 2 EGFP expressing expanded blastocysts to each 19 recipients, 7 recipients were pregnant and finally 5 EGFP transgenic cattle were produced under described ET condition. Therefore, our result suggested that transfer of 2 good-quality expanded blastocysts to $100{\mu}g$ of Gn-RH injected recipient which have normal corpus luteum with crown is feasible to produce transgenic cattle.

Analysis of Apoptosis on the Somatic Cell Nuclear Transfer embryos in porcine (돼지 체세포 복제 수정란의 자가 사멸 분석)

  • Ryu, Ji-Eun;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.33 no.3
    • /
    • pp.119-127
    • /
    • 2018
  • The purpose of this study is to examined the electrofusion and activation conditions for the production of porcine somatic cell nuclear transfer (SCNT) embryos. In this study, immature oocytes were cultured in TCM-199 with and without hormones for 22 hours. Skin fibroblasts cells of porcine were transferred into the perivitelline space of enucleated in vitro matured oocytes. Cell fusion was performed with two different pulses that each one pulse (DC) of 1.1 kV/cm or 1.5 kV/cm for $30{\mu}sec$. After fusion subsequent activation were divided into three groups; non-treatment (control) and treatment with 2 mM 6-DMAP or $7.5{\mu}g/ml$ cytochalasin B for 4 hours. Transferred embryos were cultured in PZM-3 (Porcine Zygote Medium-3) in $5%\;CO_2$ and 95% air at $39^{\circ}C$ for 7 day. Apoptosis-related genes (Caspase-3, BCL-2, mTOR, and MMP-2) were analyzed by immunofluorescence staining. There was no significant difference between two different electrofusion stimuli in the cleavage rate; $64.9{\pm}4.8%$ in 1.1 kV/cm and $62.7{\pm}4.0%$ in 1.5 kV/cm. However, blastocyst formation rate (%) was significantly different among three different activation groups (no treatment, 2 mM 6-DMAP or $7.5{\mu}g/ml$ cytochalasin B) combined with electrofusion of 1.1 kV/cm. The blastocyst formation rate was $12.6{\pm}2.5$, $20.0{\pm}5.0$, and $34.9{\pm}4.3%$ in control, 2 mM 6-DMAP, and $7.5{\mu}g/ml$ cytochalasin B, respectively. Immunofluorescence data showed that expression levels of caspase-3 in SCNT embryos undeveloped to blastocyst stage were higher than those in the blastocyst stage embryos. Expression levels of Bcl-2 in blastocyst stage embryos were higher than those in the arrested SCNT embryos. These results showed that the combination of an electric pulse (1.1 kV/cm for $30{\mu}sec$) and $7.5{\mu}g/ml$ cytochalasin B treatment was effective for production of the porcine SCNT embryos.

Efficacy of corifollitropin alfa followed by recombinant follicle-stimulating hormone in a gonadotropin-releasing hormone antagonist protocol for Korean women undergoing assisted reproduction

  • Park, Hyo Young;Lee, Min Young;Jeong, Hyo Young;Rho, Yong Sook;Song, Sang Jin;Choi, Bum-Chae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Objective: To evaluate the effect of a gonadotropin-releasing hormone (GnRH) antagonist protocol using corifollitropin alfa in women undergoing assisted reproduction. Methods: Six hundred and eighty-six in vitro fertilization-embryo transfer (IVF)/ intracytoplasmic sperm injection (ICSI) cycles were analyzed. In 113 cycles, folliculogenesis was induced with corifollitropin alfa and recombinant follicle stimulating hormone (rFSH), and premature luteinizing hormone (LH) surges were prevented with a GnRH antagonist. In the control group (573 cycles), premature LH surges were prevented with GnRH agonist injection from the midluteal phase of the preceding cycle, and ovarian stimulation was started with rFSH. The treatment duration, quality of oocytes and embryos, number of embryo transfer (ET) cancelled cycles, risk of ovarian hyperstimulation syndrome (OHSS), and the chemical pregnancy rate were evaluated in the two ovarian stimulation protocols. Results: There were no significant differences in age and infertility factors between treatment groups. The treatment duration was shorter in the corifollitropin alfa group than in the control group. Although not statistically significant, the mean numbers of matured (86.8% vs. 85.1%) and fertilized oocytes (84.2% vs. 83.1%), good embryos (62.4% vs. 60.3%), and chemical pregnancy rates (47.2% vs. 46.8%) were slightly higher in the corifollitropin alfa group than in the control group. In contrast, rates of ET cancelled cycles and the OHSS risk were slightly lower in the corifollitropin alfa group (6.2% and 2.7%) than in the control group (8.2% and 3.5%), although these differences were also not statistically significant. Conclusion: Although no significant differences were observed, the use of corifollitropin alfa seems to offer some advantages to patients because of its short treatment duration, safety, lower ET cancellation rate and reduced risk of OHSS.

Effect of Production In Vitro Embryo using Boar Frozen Semen (돼지 동결 정액을 이용한 체외 수정란 생산 효율)

  • Cho, Sang-Rae;Kim, Hyun-Jong;Choe, Chang-Yong;Son, Dong-Soo;Choi, Sun-Ho;Son, Jun-Kyu;Kim, Sung-Jae;Kim, Jae-Bum;Han, Man-Hye;Jin, Hyun-Ju
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • This study was carried out to investigate the effective genetic resources preservation system using the frozen boar semen. The porcine oocytes were matured for 44 hours in NCSU-23 medium with or without 10% Porcine Follicle Fluid (PFF), 0.5 ${\mu}g/ml$ porcine FSH, 0.5 ${\mu}g/ml$ equine LH, 1.0 ${\mu}g/ml$ 17 $\beta$-estradiol ($E_2$) and 10 ng/ml Epidermal Growth Factor (EGF) under mineral oil at $38.5^{\circ}C$ in humidified atmosphere of 5% $CO_2$ in air. After 44 h of culture, the oocytes were inseminated with frozen-thawed semen and fresh semen prepared with mTBM medium for 6 h. Later, set of 50 presumptive zygotes were transferred into 4-well dish (500 ${\mu}l$) of IVC medium. for embryos freezing, slow-freezing and vitrification methods were used as a cryopreservation. Differences among treatments were analyzed using General Linear Model Procedure by SAS Package (version 6.12) differences were considered significant when p<0.05. Following IVF and IVC, the rates of cleavage and blastocysts formation were significantly higher (p<0.05) in hormone supplemented group than that of hormone-free group (25.7 vs, 12.1). The development rates to cleavage and blastocysts were significantly higher in PZM-5 group than NCSU-23 group (60.3%, 46.6% vs 27.4%, 11.1%). Further improvement was achieved when PZM-5 was supplemented with FBS. Cleavage rates was significantly higher in fresh semen source group than frozen semen (66.7% vs 43.7%). However in blastocysts rates was similar two groups. Post-thaw survival rates of embryos were 1.2% and 2.2% in slow-frezing and vitrification groups, respectively. The results of our study suggest that it is still possible to improve the culture conditions and boar semen cryopreservation for enhance reproductive technology and animal genetic resources conservation.

Effect of Cell Cycle Stage on the Development of Embryos Produced by Cumulus Cell Nuclear Transfer in Hanwoo (Korean Cattle)

  • Im, G.S.;Yang, B.S.;Yang, B.C.;Chang, W.K.;Yi, Y.J.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.759-764
    • /
    • 2001
  • This study was carried out to investigate the effect of activation timing, cell cycle and passage on the development of embryos produced by cumulus cell nuclear transfer in Hanwoo (Korean cattle). Nuclear donor cumulus cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $38.5^{\circ}C$ in a humidified atmosphere of 5% $CO_2$ in air. The 1~6 passages of serum deprived or actively dividing cumulus cells were isolated and used as donor cells. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. One pulse of 180 volts for $15{\mu}s$ was applied to induce the fusion between karyoplast and cytoplast. The activation was done before or after the fusion. To activate, oocytes were treated with $10{\mu}M$ calcium ionophore for 5 min immediately followed by 2 mM 6-dimethylaminopurine for 3 h. The nuclear transfer embryos were cultured in $500{\mu}l$ of modified CRlaa supplemented with 3 mg/ml BSA in four well dish covered with mineral oil. After 3 days culture, culture medium was changed into modified CRlaa medium containing 1.5 mg/ml BSA and 5% FBS for 4 days. The incubation environment was 5% $CO_2$, 5% $O_2$, 90% $N_2$ at $38.5^{\circ}C$. There was no blastocyst formation when the nuclear transfer embryos were activated before the fusion, whereas, 29.9% of blastocyst formation was shown when the nuclear transfer embryos were activated after the fusion. When serum deprived and actively dividing cumulus cells were used as nuclear donor cells, the developmental rates to blastocyst were 38.5% and 40.6%, respectively. There was no significant difference between serum deprived and actively dividing cells in the developmental rates. The developmental rates to blastocyst according to 1~6 passages were 37.5~44.4%. However, there were no significant differences among passages. These results indicate that 1~6 passage cumulus cell irrespective of cell cycle could support development of nuclear transfer embryos activated after the fusion.

Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos

  • Kim, So-Young;Kim, Tae-Suk;Park, Sang-Hoon;Lee, Mi-Ran;Eun, Hye-Ju;Baek, Sang-Ki;Ko, Yeoung-Gyu;Kim, Sung-Woo;Seong, Hwan-Hoo;Campbell, Keith H.S.;Lee, Joon-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.266-277
    • /
    • 2014
  • Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with $4{\mu}g/mL$ of digitonin for 2 min at $4^{\circ}C$ in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at $18^{\circ}C$ was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.