• Title/Summary/Keyword: In vitro roots

Search Result 365, Processing Time 0.033 seconds

Occurrence of Rhizoctonia Blight of Zoysiagrasses in Golf Courses in Korea (국내 골프장 한국잔디의 라이족토니아마름병 발생)

  • 심규열;김진원;김희규
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.54-60
    • /
    • 1994
  • Incidence of Rhizoctonia blight ranged from 22.2% to 100% in the golf courses at six geographical locations in Korea from 1989 to 1993. Rhizoctonia blight occurred more severly in southern area than in northern area. Fifty seven isolates of Rhizoctonia solani obtained from diseased parts of zoysiagrasses were grouped to AG2-2 by anastomosis test. Pathogenicity testes revealed that this pathogen was strongly pathogenic to Korean lawngrasses(Zoysia japonica, Z. matrella, Z. tenuifolia), but not pathogenic to creeping bentgrass(Agrostis palustris), bermuldagrass(Cynodon dactylon), Kentucky bluegrass(Poa pratensis), perennial ryegrass(Lolium prenne), and creeping red fescue(Festuca rubra subsp. rubra L.). The isolation frequency of R. solani AG2-2 fro sheaths of the infected plants was the highest by 91.67%, and that from stolons and roots was 11.13% and 5.63% respectively. The pathogen was not isolated from the leaves. Population density of R. solani in the lawn of large circular patch was highest on surface soils down to 1 cm deep with the value of 4.9$\times$104 (CFU/g soil), but below 1 cm population density decreased sharply down to 0.8~9.8$\times$103 (CFU/g soil). Horizontal distribution of propagules in turfgrass soil was higher in the margin than in center of patch, where the number of propagules was similar to these of healthy looking soils close to the margin of diseased patch. The meteorological factors influencing the outbreak of the disease were temperature, the number of rainy days and precipitation. Optimum temperature for disease development of Rhizoctonia blight in field was 20~22$^{\circ}C$, and that for hyphal growth of R. solani AG2-2 in vitro was 25~3$0^{\circ}C$. In Pusan area, Rhizoctonia blight first occurred in late April and rapidly developed in late June. The disease slightly decreased during July to August and developed again in late September in 1993. The monthly disease progress in Pusan area was similar to that in Kyeonggi province.

  • PDF

Regional Adaptation of the Genus Cypripedium in Korea and Micropropagation with Seed

  • Lee, Joung Kwan;Kwon, Young Hee;Kim, Hee Kyu;Kim, Kyung Ok;Park, Jae Seong;Jeong, Mi Jin;Son, Sung Won;Suh, Gang Uk
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.23-23
    • /
    • 2019
  • Cypripedium is an orchid genus of over 50 species widely distributed in the northern temperate zone, with a few taxa extending central America and the Himalayas and the southwesternmost tip of China in Asia. Of the known species approximately two thirds are found in China. In Korea, 4 species were reported to find with rare popularity ; C. macranthos, C. guttatum, C. japonicum, and C. calceolus. The seed has a firm brown fusiform testa with an opening at one end where the micropyle of the ovule was situated. Cypripedium has small, fusiform, wind-dispersed seeds that weigh about $1{\sim}2{\mu}g$ and range from 0.1 to 2 mm long and 0.07 to 0.4 mm across. The germination of Cypripedium was previously thought to be hard to cultivate in one's garden and impossible to propagate artificially, nowadays lab-propagated seedlings are readily available in EU or United States. We had already reported the successful micropropagation of lady's slipper orchids with green pod sowing methods. The collected Cypripedium species and hybrids were planted in Korea National Arboretum (KNA) on Oct. 2018. The 11 species including C. candidum and the 31 hybrids such as C. Ingrid were introduced from Germany with CITES certification. The lady's slipper orchids bloomed on May to June, and the flowers were pollinated in the same species or hybrids to get seeds for in vitro germination on 2~3 days after fully flowering. The green pods were collected after 49~70 days after pollination. The 6 species of Cypripedium seeds were easily germinated on the POM within 70 days after sowing, and the 12 hybrids PLBs were observed with small roots. We had established the scheme of lady's slipper orchids germination in 3 months with green pods, and get the possibility of seedling in 10 months of sowing in vitro.

  • PDF

Evaluation of Glucose Dehydrogenase and Pyrroloquinoline Quinine (pqq) Mutagenesis that Renders Functional Inadequacies in Host Plants

  • Naveed, Muhammad;Sohail, Younas;Khalid, Nauman;Ahmed, Iftikhar;Mumtaz, Abdul Samad
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1349-1360
    • /
    • 2015
  • The rhizospheric zone abutting plant roots usually clutches a wealth of microbes. In the recent past, enormous genetic resources have been excavated with potential applications in host plant interaction and ancillary aspects. Two Pseudomonas strains were isolated and identified through 16S rRNA and rpoD sequence analyses as P. fluorescens QAU67 and P. putida QAU90. Initial biochemical characterization and their root-colonizing traits indicated their potential role in plant growth promotion. Such aerobic systems, involved in gluconic acid production and phosphate solubilization, essentially require the pyrroloquinoline quinine (PQQ)-dependent glucose dehydrogenase (GDH) in the genome. The PCR screening and amplification of GDH and PQQ and subsequent induction of mutagenesis characterized their possible role as antioxidants as well as in growth promotion, as probed in vitro in lettuce and in vivo in rice, bean, and tomato plants. The results showed significant differences (p ≤ 0.05) in parameters of plant height, fresh weight, and dry weight, etc., deciphering a clear and in fact complementary role of GDH and PQQ in plant growth promotion. Our study not only provides direct evidence of the in vivo role of GDH and PQQ in host plants but also reveals their functional inadequacy in the event of mutation at either of these loci.

In vitro shoot initiation of Artocarpus heterophyllus Lam. (Jak Fruit) Effect of the explant type and the season of explant collection

  • Kahk, Kasturiarachchi;Wtpsk, Senarath;Lee, Kui-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.2-3
    • /
    • 2003
  • A method for rapid propagation of mature Jack fruit was developed. Four types of explants (mature embryos, apical meristems of young seedlings, apices from mature plants and nodal segments) were used. It has been found 88% of young apical meristems produced shoots in Campbell and Durzan (CD) medium compared to 60% in Murashige and Skoog (MS) medium. Only 1/3 of them produced multiple shoots. Shoot initiation from nodal segments was very rare. Mature apices produced callus. Although removal of the sheathing cover around mature buds enhanced the shoot initiation but success rate was low in growth regulator free medium. Embryos respond to the CD medium but not to the MS medium. Embryos from seeds soaked in water for 24 hours produced shoots after 8 weeks of incubation and the success rate was 70% while embryos from dry seeds only produced roots. There was no significant effect of cold storage (refrigeration) for 7 days on shoot initiation from mature embryos (65%) but the ability for shoot induction declines with storage time (55% after 21 days of cold storage). Mature axillary buds were established in Modified Campbell and Durzan (CD) medium supplemented with 0.5mg/1 and IBA. There was a significant difference in the growth performance of shoots according to the period of the year in which explants were collected. Highest (60%) was observed in November-January period. It was only 30% when the explants were collected in February-April or May-July and decreased to 20% in August-October. The shoots produced in November-January showed a higher vigor than those produced in other months. Since Jak fruit show seasonal changes in fruit bearing and shedding of leaves, it can be suggested that the difference in growth performances of tissues cultured in artificial culture media would have been affected by endogenous rhythms.

  • PDF

In vitro shoot initiation of Artocarpus heterophyllus Lam. (Jak Fruit) Effect of the explant type and the season of explant collection

  • Kahk, Kasturiarachchi;Wtpsk, Senarath;Lee, Kui-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10a
    • /
    • pp.9-18
    • /
    • 2003
  • A method for rapid propagation of mature Jack fruit was developed. Four types of explants (mature embryos, apical meristems of young seedlings, apices from mature plants and nodal segments) were used. It has been found 88% of young apical meristems produced shoots in Campbell and Durzan (CD) medium compared to 60% in Murashige and Skoog (MS) medium. Only 1/3 of them produced multiple shoots. Shoot idtiation from nodal segments was very rare. Mature apices produced callus. Although removed of the sheathing cover around mature buds enhanced the shoot initiation but success rate was low in growth regulator free medium. Embryos respond to the CD medium but not to the MS medium. Embryos from seeds soaked in water for 24 hours produced shoots after 8 weeks of incubation and the success rate was 70% while embryos from dry seeds only produced roots. There was no significant effect of cold storage (refrigeration) for 7 days on shoot initiation from mature embryos (65%) but the ability for shoot induction declines with storage time (55% after 21 days of cold storage). Mature axillary buds were established in Modified Campbell and Durzan (CD) medium supplemented with 0.5mg/1 and IBA. There was a significant difference in the growth performance of shoots according to the period of the year in which explants were collected. Highest (60%) was observed in November-January period. It was only 30% when the explants were collected in February-April or May-July and decreased to 20% in August-October. The shoots produced in November-January showed a higher vigor than those produced in other months. Since Jak fruit show seasonal changes in fruit bearing and shedding of leaves, it can be suggested that the difference in growth performances of tissues cultured in artificial culture media would have been affected by endogenous rhythms.

  • PDF

New protocol for the indirect regeneration of the Lilium ledebourii Bioss by using bulb explants

  • Ghanbari, Sina;Fakheri, Barat Ali;Naghavi, Mohammad Reza;Mahdinezhad, Nafiseh
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.146-153
    • /
    • 2018
  • Lilium ledebourii Bioss is a wild species of Lilium, which grows naturally in some provinces of Iran. Previous studies on Lilium tissue culture have been linked to direct regeneration and a few studies have been conducted on indirect regeneration, which has been studied under bright conditions. In this study, for the first time in the world, all the stages of indirect regeneration (callus induction, shoot and root induction) have been studied under dark conditions. Callus formation and the regeneration levels of L. Ledebourii Bioss were examined for three replicates in an MS (Murashige and Skoog) medium with different hormonal compositions and by using a factorial experiment in the framework of a completely random plan. For callus initiation, 2,4-D and kinetin hormones were used in five and four levels, respectively, as auxin and cytokinin. Results showed that the highest percentage of the callus was found in $3{\mu}M$ of 2,4-D and $0.5{\mu}M$ of kinetin. In terms of callus wet weight, the highest amount was found in $3{\mu}M$ of 2,4-D and $0.5{\mu}M$ of kinetin. In addition, in terms of diameter, the highest amount was found in $3{\mu}M$ of 2,4-D, and $0.5{\mu}M$ of kinetin. In summary, the 2,4-D hormone had a major impact on the percentage of regeneration increase so that the best response was related to the composition of $3{\mu}M$ of 2,4-D, and $0.1{\mu}M$ of kinetin. This study contended that auxin and cytokinin can induce long shoots and roots through cell elongation in dark condition.

Antagonistic Mode of Action of Fenoxaprop-P-ethyl Phytotoxicity with Bentazon (Fenoxaprop-P-ethyl의 제초활성에 대한 Bentazon의 길항작용기구)

  • Ma, S.Y.;Kim, S.W.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 1998
  • Antagonistic mode of action of fenoxaprop-P-ethyl [ethyl(R)2-4-{(6-chloro-2-benzoxazolyloxy) phenoxy}propionate] with bentazon was investigated with respect to absorption, translocation, metabolism, and change in target site response of fenoxaprop-P-ethyl using four-leaf stage of rice(Oryza sativa L.) and barnyardgrass [Echinochloa eras-galli (L.) P. Beauv.]. Shoots of rice and barnyardgrass was more sensitive to fenoxaprop-P-ethyl than the roots. More than 90% of fenoxaprop-P-ethyl was absorbed within 6 hours after treatment and 30% of the absorbed was acropetally and basipetally translocated at 24 hours after treatment. Fenoxaprop-P-ethyl was rapidly transformed to its acid form, fenoxaprop(2-[4-(6-chloro-2-benzoxazolyloxy)phenoxy]propionic acid), which was subsequently metabolized to polar conjugates. However, changes in absorption, translocation, and metabolism of fenoxaprop-P-ethyl by bentazon treatment were not found in both species. Background activity of acetyl-CoA carboxylase(ACCase) in rice and barnyardgrass was 26.5 and 23.2nmol/min/mg, respectively. Concentration required to inhibit fifty percent enzyme activity$(I_{50})$ in vitro was 6.5~7.4${\mu}M$ of fenoxaprop-P-ethyl and more than 500${\mu}M$ of bentazon. There were no significant differences in $I_{50}$ value between two treatments of fenoxaprop-P-ethyl alone and its bentazon mixture. However, bentazon reduced ACCase activity in vivo and inhibited electron transport in chloroplast thylakoid. Based on the results obtained, it is concluded that the antagonistic effect of bentazon occurs due not to direct effect on target site of fenoxaprop-P-ethyl, but to indirect involvement in reducing herbicidal activity of fenoxaprop-P-ethyl through physiological disturbances caused by bentazone at whole chloroplast level.

  • PDF

Inhibitory Effects of KM1701 on Airway Cell Infiltration in OVA-Induced Mouse Model (OVA-유도 쥐 모델에서 기도 세포 침윤에 대한 KM1701의 억제효과)

  • Lim, Soon-Min;Choi, Han-Seok;Kim, Sang-Back;Kim, Ye-Jin;Kang, Ki-Sung;Shin, Myoung-Sook;Kim, Kyung-Jun;Hwang, Gwi-Seo;Koo, Bon-Am
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.32 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • Objectives : The objective of present study is to evaluate anti-inflammatory and anti-allergic effects of Perilla(Perilla frutescens; Labiatae, PF), the roots of Peucedanum praeruptorum(PP) and the root of Scutellaria baicalensis(SB) in vitro and anti-asthmatic effects of mixture of PF, PP and SB(PS) on ovalbumin (OVA)-induced asthma in BALB/c mice. Methods : Anti-inflammatory and anti-allergic effects were observed on the lipopolysaccharide(LPS) treated RAW 264.7 cells through Nitric Oxide(NO) production and RBL-2H3 cells through ${\beta}$-hexosaminidase. Anti-asthmatic effects were observed on the number of inflammatory cells in bronchoalveolar lavage fluid(BALF) and the level of IgE in serum on OVA-induced BALB/c mice. Results : The treatment of PF, PP and SB(12.5, 25, 50, $100{\mu}g/m{\ell}$) resulted in a significant inhibition of NO production in RAW 264.7 cells and mast cell degranulation in RBL-2H3 cells. Oral administration of PS(400mg/kg/day) resulted in a significant reduction in the numbers of eosinophils in BALF and level of IgE in serum. Conclusion : The oral administration of PS is effective in ameliorating the eosinophilic infiltration in vivo and thus can be a good therapeutic candidate for allergic asthma.

P-hydroxybenzoic acid positively affect the Fusarium oxysporum to stimulate root rot in Panax notoginseng

  • Jing Zhao;Zhandi Wang;Rong Jiao;Qionglian Wan;Lianchun Wang;Liangxing Li;Yali Yang;Shahzad Munir
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.229-235
    • /
    • 2024
  • Background: Plant health is directly related to the change in native microbial diversity and changes in soil health have been implicated as one of the main cause of root rot. However, scarce information is present regarding allelopathic relationship of Panax notoginseng root exudates and pathogenic fungi Fusarium oxysporum in a continuous cropping system. Methods: We analyzed P. notoginseng root exudate in the planting soil for three successive years to determine phenolic acid concentration using GC-MS and HPLC followed by effect on the microbial community assembly. Antioxidant enzymes were checked in the roots to confirm possible resistance in P. notoginseng. Results: Total 29 allelochemicals in the planting soil extract was found with highest concentration (10.54 %) of p-hydroxybenzoic acid. The HPLC showing a year-by-year decrease in p-hydroxybenzoic acid content in soil of different planting years, and an increase in population of F. oxysporum. Moreover, community analysis displayed negative correlation with 2.22 mmol. L-1 of p-hydroxybenzoic acid correspond to an 18.1 % population of F. oxysporum. Furthermore, in vitro plate assay indicates that medium dose of p-hydroxybenzoic acid (2.5-5 mmol. L-1) can stimulate the growth of F. oxysporum colonies and the production of macroconidia, as well as cell wall-degrading enzymes. We found that 2-3 mmol. L-1 of p-hydroxybenzoic acid significantly increased the population of F. oxysporum. Conclusion: In conclusion, our study suggested that p-hydroxybenzoic acid have negative effect on the root system and modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease.

Improved Resistance to Oxidative Stress by a Loss-of-Function Mutation in the Arabidopsis UGT71C1 Gene

  • Lim, Chae Eun;Choi, Jung Nam;Kim, In A;Lee, Shin Ae;Hwang, Yong-Sic;Lee, Choong Hwan;Lim, Jun
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.368-375
    • /
    • 2008
  • Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro. Such secondary metabolites are known to play important roles in plant growth and development. To help define the role of UGT71C1 in planta, we investigated its expression patterns, and isolated and characterized a loss-of-function mutation in the UGT71C1 gene (named ugt71c1-1). Our analyses by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), microarray data mining, and histochemical detection of GUS activity driven by the UGT71C1 promoter region, revealed the tissue-specific expression patterns of UGT71C1 with highest expression in roots. Interestingly, upon treatment with methyl viologen (MV, paraquat), ugt71c1-1 plants displayed enhanced resistance to oxidative stress, and ROS scavenging activity was higher than normal. Metabolite profiling revealed that the levels of two major glycosides of quercetin and kaempferol were reduced in ugt71c1-1 plants. In addition, when exposed to MV-induced oxidative stress, eight representative ROS response genes were expressed at lower levels in ugt71c1-1 plants, indicating that ugt71c1-1 probably has higher non-enzymatic antioxidant activity. Taken together, our results indicate that ugt71c1-1 has increased resistance to oxidative stress, suggesting that UGT71C1 plays a role in some glycosylation pathways affecting secondary metabolites such as flavonoids in response to oxidative stress.