• Title/Summary/Keyword: In vitro binding assay

Search Result 187, Processing Time 0.027 seconds

Examination of specific binding activity of aptamer RNAs to the HIV-NC by using a cell-based in vivo assay for protein-RNA interaction

  • Jeong, Yu-Young;Kim, Seon-Hee;Jang, Soo-In;You, Ji-Chang
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.511-515
    • /
    • 2008
  • The nucleocapsid (NC) protein of the Human Immunodeficiency Virus-1 plays a key role in viral genomic packaging by specifically recognizing the Psi($\Psi$) RNA sequence within the HIV-1 genome RNA. Recently, a novel cell-based assay was developed to probe the specific interactions in vivo between the NC and $\Psi$-RNA using E.coli cells (J. Virol. 81: 6151-55, 2007). In order to examine the extendibility of this cell-based assay to RNAs other than $\Psi$-RNA, this study tested the RNA aptamers isolated in vitro using the SELEX method, but whose specific binding ability to NC in a living cellular environment has not been established. The results demonstrate for the first time that each of those aptamer RNAs can bind specifically to NC in a NC zinc finger motif dependent manner within the cell. This confirms that the cell-based assay developed for NC-$\Psi$interaction can be further extended and applied to NC-binding RNAs other than $\Psi$-RNA.

Analysis of Promoter Elements for Transcriptional Expression of Rat p53 Gene in Regenerating Liver

  • Lee, Min-Hyung;Song, Hai-Sun;Park, Sun-Hee;Choi, Jin-Hee;Yu, Sun-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • We previously found three transcription factor-binding motifs in the rat p53 promoter. They are two recognition motifs of NF1-like protein (NF1-like element 1: -296 ~ -312, NF1-like element 2: -195 ~ -219) and a bHLH protein binding element (-142 ~ -146). In this study, we investigated the DNA-protein complex formation of the three elements with nuclear extracts from both normal and regenerating liver to find the element involved in the induced transcription of p53. The level of each DNA-protein complex on NF1-like and bHLH motifs was not changed. Instead, a new element located at -264 ~ -284 was detected in the DNase I footprinting assay with regenerating nuclear extract. This element has partial homology to the AP1 consensus motif. However, the competition studies with diverse oligonucleotides suggest that the binding protein is not AP1. An in vitro transcription assay shows that this element is important for the transcriptional activation of the rat p53 promoter. Therefore, for the induced transcription of the rat p53 promoter, the-264 ~ -284 region is required in addition to two NF1-like and one bHLH motif.

  • PDF

Cyclooxygenase-2 Inhibitor Parecoxib Was Disclosed as a PPAR-γ Agonist by In Silico and In Vitro Assay

  • Xiao, Bin;Li, Dan-dan;Wang, Ying;Kim, Eun La;Zhao, Na;Jin, Shang-Wu;Bai, Dong-Hao;Sun, Li-Dong;Jung, Jee H.
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.519-526
    • /
    • 2021
  • In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

Corticosteroid Resistant Asthma

  • Lane, Stephen J.;Lee, Tak-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.801-812
    • /
    • 1995
  • CR asthma is associated with disease chronicity, a positive family history of asthma and in vitro and in vivo defects in mononuclear cell function. The HPA axis in CR asthmatics is suppressed normally by dexamethasone and the pharmacokinetic profile of an oral dose of prednisolone is similar to that found in CS subjects. In addition, competitive binding studies have shown that the ligand binding and nuclear translocation functions of the GR are similar in the two groups. Studies using gel retardation assay have indicated a defect in DNA binding in CR subjects. Chemical mutational analysis of the GR has shown that is not due to a defect in its structure at the cDNA level. Scatchard analysis of the GR/DNA and GR/ligand interactions suggests that there may be transcriptional interference of the GR with other transcriptionally active molecules leading to defective gene transcription.

  • PDF

Homologous Expression and T3SS-Dependent Secretion of TAP-Tagged Xo2276 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract and Its Direct In Vitro Recognition of Putative Target DNA Sequence

  • Kim, Seunghwan;Nguyen, Thi-Dieu-Hanh;Lee, Joohee;Hong, Myoung-Ki;Pham, Tan-Viet;Ahn, Yeh-Jin;Lee, Byoung-Moo;Han, Ye Sun;Kim, Dong-Eun;Kim, Jeong-Gu;Kang, Lin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • Xo2276 is a putative transcription activator-like effector (TALE) in Xanthomonas oryzae pv. oryzae (Xoo). Xo2276 was expressed with a TAP-tag at the C-terminus in Xoo cells to enable quantitative analysis of protein expression and secretion. Nearly all TAP-tagged Xo2276 existed in an insoluble form; addition of rice leaf extracts from a Xoosusceptible rice cultivar, Milyang23, significantly stimulated secretion of TAP-tagged Xo2276 into the medium. In a T3SS-defective Xoo mutant strain, secretion of TAPtagged Xo2276 was blocked. Xo2276 is a Xoo ortholog of Xanthomonas campestris pv. vesicatoria (Xcv) AvrBs3 and contains a conserved DNA-binding domain (DBD), which includes 19.5 tandem repeats of 34 amino acids. Xo2276- DBD was expressed in E. coli and purified. Direct in vitro recognition of Xo2276-DBD on a putative target DNA sequence was confirmed using an electrophoretic mobility shift assay. This is the first study measuring the homologous expression and secretion of Xo2276 in vitro using rice leaf extract and its direct in vitro binding to the specific target DNA sequence.

Identification of binding motifs for skeletal ryanodine receptor and triadin

  • Lee, Jae-Man;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.66-66
    • /
    • 2003
  • In skeletal muscle cells, depolarization of the transverse tubules (T-tubules) results in Ca$\^$2+/ release from the sarcoplasmic reticulum (SR), leading to elevated cytoplasmic Ca$\^$2+/ and muscle contraction. This process has been known as excitation-contraction coupling (E-C coupling). Several proteins, such as the ryanodine receptor (RyR), triadin, junctin, and calsequestrin (CSQ), have been identified to be involved in the Ca$\^$2+/ release process. However, the molecular interactions between the SR proteins have not been resolved. In the present study, the mechanisms of interaction between RyRl and triadin have been studied by in vitro protein binding and $\^$45/Ca$\^$2+/ overlay assays. Our data demonstrate that the intraluminal loop II of RyR1 binds to triadin in Ca$\^$2+/-independent manner. Moreover, we could not find any Ca$\^$2+/ binding sites in the loop II region. GST-pull down assay revealed that a KEKE motif of triadin, which was previously identified as a CSQ binding site (Kobayasi et al.,2000 JBC) was also a binding site for RyR1. Our results suggest that the intraluminal loop II of RyR could participate in the RyR-mediated Ca$\^$2+/ release process by offering a direct binding site to luminal triadin.

  • PDF

Ric-8B Modulates the Function of Alpha Subunit of Go

  • Kim, Seung-Hyun;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.127-133
    • /
    • 2007
  • Heterotrimeric GTP binding proteins (G proteins) mediate signal generated by neurotransmitter and hormones. Among all G proteins, Go is the most abundant in brain but its role in brain is not clearly understood. To determine the function of the alpha subunit of Go (Go$\alpha$), we search for the interacting partner of Go$\alpha$ in brain using yeast two-hybrid system. A resistant to inhibitor of cholinesterase (Ric-8B) was identified as a Go$\alpha$ interacting protein. We confirmed interaction between Go$\alpha$ and Ric-8b employing in vitro affinity binding assay and showed that the Ric-8b increased the function of Go$\alpha$. Our findings indicate that Ric-8b is possible guanine nucleotide exchange factor for Go$\alpha$.

  • PDF

Expression of ATE2 Transcription Factor and the Interaction with AP-1 Factors : BATF, c-Fos, c-Jun (ATF2 전사인자의 발현과 AP-1 전사인자인 BATF, c-Fos, c-Jun과의 이량체 형성)

  • Jang Hye-Young;Kim Jae-Ho
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.928-934
    • /
    • 2005
  • ATF2 is a cellular transcription factor which belongs to the CREB/ATF class and it is leucine zipper protein which generally binds to DNA as dimers. This paper presents the procedure for subcloning the ATF2 gene and the results of experiment used the expressed ATF2. The pET expression vector was used since it produced 6xHis fusion protein for easy purification using affinity column. The Nickel chelating chromatography was used for Purifying the expressed ATE2 from E- codi BL2l. Subsequen시y In vitro binding pull-down assay showed the binding specificity of ATF2 with AP-1 family factors such as BATF, c-Fos, c-Jun and ATF2 itselgf. ATF2 forms homodimer as well as strong heterodimer with BATF. It also forms stable dimer with c-Jun but barely binds with c-Fos.

H2AX Directly Interacts with BRCA1 and BARD1 via its NLS and BRCT Domain Respectively in vitro (H2AX의 BRCA1 NLS domain과 BARD1 BRCT domain 각각과의 in vitro 상호 결합)

  • Bae, Seung-Hee;Lee, Sun-Mi;Kim, Su-Mi;Choe, Tae-Boo;Kim, Cha-Soon;Seong, Ki-Moon;Jin, Young-Woo;An, Sung-Kwan
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.403-409
    • /
    • 2009
  • H2AX, a crucial component of chromatin, is implicated in DNA repair, cell cycle check point and tumor suppression. The aim of this study was to identify direct binding partners of H2AX to regulate cellular responses to above mechanisms. Literature reviews and bioinformatical tools were attempted intensively to find binding partners of H2AX, which resulted in identifying two potential proteins, breast cancer-1 (BRCA1) and BRCA1-associated RING domain 1 (BARD1). Although it has been reported in vivo that BRCA1 co-localizes with H2AX at the site of DNA damage, their biochemical mechanism for H2AX were however only known that the complex monoubiquitinates histone monomers, including unphosphorylated H2AX in vitro. Therefore, it is important to know whether the complex directly interacts with H2AX, and also which regions of these are specifically mediated for the interaction. Using in vitro GST pull-down assay, we present here that BRCA1 and BARD1 directly bind to H2AX. Moreover, through combinational approaches of domain analysis, fragment clonings and in vitro binding assay, we revealed molecular details of the BRCA1-H2AX and BARD1-H2AX complex. These data provide the potential evidence that each of the BRCA1 nuclear localization signal (NLS) and BARD1 BRCA1 C-terminal (BRCT) repeat domain is the novel mediator of H2AX recognition.