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The nucleocapsid (NC) protein of the Human Immunodeficiency 
Virus-1 plays a key role in viral genomic packaging by specifi-
cally recognizing the Psi(Ψ) RNA sequence within the HIV-1 
genome RNA. Recently, a novel cell-based assay was devel-
oped to probe the specific interactions in vivo between the NC 
and Ψ-RNA using E.coli cells (J. Virol. 81: 6151-55, 2007). In 
order to examine the extendibility of this cell-based assay to 
RNAs other than Ψ-RNA, this study tested the RNA aptamers 
isolated in vitro using the SELEX method, but whose specific 
binding ability to NC in a living cellular environment has not 
been established. The results demonstrate for the first time that 
each of those aptamer RNAs can bind specifically to NC in a 
NC zinc finger motif dependent manner within the cell. This 
confirms that the cell-based assay developed for NC-Ψ inter-
action can be further extended and applied to NC-binding 
RNAs other than Ψ-RNA. [BMB reports 2008; 41(7): 511-515]

INTRODUCTION

The human immunodeficiency virus type 1 (HIV-1) nucleocap-
sid (NC) protein plays important roles in several steps of the vi-
rus life cycle, particularly viral particle assembly (1, 2). It is pro-
duced through proteolytic processing of the Gag polyprotein 
precursor and contains two zinc finger motifs (Cys-X2-Cys-X4- 
His-X4-Cys), which are highly conserved among all retrovirus 
families (3-5). Mutations of the zinc finger domains cause ma-
jor defects in the specific RNA binding activity and encapsida-
tion of viral genomic RNA (3-10). The NC protein specifically 
recognizes so-called Psi (Ψ)-RNA sequences, which are approx-
imately 120 bases long and contain four stem loops in the 
5'-long terminal repeat (5'-LTR) region of the HIV-1 RNA that 
enable it to encapsulate selectively the viral genomic RNA 

among many different cellular RNAs (4, 11-13). Because the in-
teraction is essential for the efficient packaging of the genomic 
RNA into a new HIV-1 virus particle, it has had bee studied ex-
tensively in an attempt to understand molecular mechanism of 
the specific protein-RNA interaction, such as what stem loops 
of the Ψ are important for binding to the NC protein and how 
small a portion of the nucleic acids is needed (14,15). This spe-
cific protein-RNA interaction is one of the important model sys-
tems in the field of protein-RNA interaction. 
    In order to further understand the specific RNA structural 
moiety recognized by the NC protein, many attempts have 
been made to search for RNA aptamers that are specific to the 
Gag or NC protein. Such RNA aptamers were selected from 
random RNA pools by repeated rounds of a selection techni-
que in vitro, specifically what is known as SELEX (Systemic 
Evolution of Legends by Exponential enrichment) (16, 17). A 
number of in vitro selected RNA aptamer molecules obtained 
using this technique have been reported to bind to the HIV-1 
Gag protein with high affinity (18) or to NC in vitro (4, 19-21). 
However, it is unclear if these RNA aptamers operate and bind 
to the NC protein with the same specificity and affinity within 
living cells. 
    A novel cell-based assay was recently developed to probe 
the specific interaction between the NC protein and wild type 
Ψ-RNA in vivo using E.coli cells (22). The aim of this study 
was to examine these NC aptamer RNAs in a cell-based assay 
not only to test the specific binding activity of the aptamer 
RNAs in vivo but also to determine the applicability and ex-
pandability of the assay to examine the NC-RNA interactions. 
From this study, it was found that the RNA aptamers inves-
tigated here showed specific binding activity to NC in vivo. 
This shows that the cell-based NC-Ψ interaction assay can be 
used effectively to examine the interactions between NC and 
NC specific RNAs. In addition, it was found that not all the 
RNA aptamers showed higher binding affinity than Ψ-RNA, 
which is in contrast to that reported in the in vitro test. This 
suggests that they may not operate equally under in vivo 
conditions. This highlights the need to confirm in vivo the 
binding ability of RNA aptamers isolated in vitro using a sec-
ondary cell-based assay, as demonstrated in this report.
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Fig. 1. The sequence of the Psi and 
RNA aptamers and the structure of the 
NC and NC mutants. (A) Wild type Psi
and RNA aptamers sequence. The wild
type Psi sequence was derived from 
the HIV ARV-2/SF2 strain and the RNA 
aptamer sequences are shown. (B) 
Amino acid sequence of the wild type 
and its zinc finger mutant NC protein 
derived from the HIV NL4-3 strain.

Fig. 2. β-galactosidase assay for the inter-
action of the RNA aptamers to the wild 
type and mutant NC protein. The in vivo
binding affinity of each of the SELEX 
RNAs to NC was measured as described
in Materials and Methods. In the case of 
the Ψ-RNA sequence (A), the reporter 
gene activity was repressed approx-
imately 90-92% with the wild type NC, 
15-20% with 1351, 70-72% with 1352, 
and 0-5% with 612. In the case of the
8-6 RNA sequence (B), the reporter activ-
ity was repressed approximately 85-90%
with wild type NC, 64-66% with 1351, 
83-84% with 1352, and 12-18% with 
612. In the case of the 8-13 RNA se-
quence (C), the reporter activity was re-
pressed approximately 84-86% with the 
wild type NC, 15-20% with 1351, 
70-75% with 1352 and almost no re-
pression with 612. In the case of the 
90-20 RNA sequence (D), the reporter 
activity was repressed approximately 
85-88% with the wild type NC, 50-55%
with 1351, 69-72% with 1352 and al-
most no repression with 612. All experi-
ments were performed in triplicate.

RESULTS AND DISCUSSION

In order to examine the extendibility and applicability of the 
cell-based assay to RNAs other than Ψ-RNA, which has been 
established to probe the specific interaction between NC and 
Psi(Ψ)-RNA via NC-Psi(Ψ) mediated Translation Repression of 
reporter gene (NPTR assay) in living cells (22), this study exam-
ined the RNA aptamers isolated using the SELEX method, 
which binds the HIV-1 NC protein with high affinity in vitro 
(21) but whose specific binding ability to NC in a living cel-

lular environment is unclear.
    The RNA aptamers were composed of a stretch of nucleo-
tide sequences shorter than Ψ-RNA (Fig. 1A) but contained 
stem loop structures, such as Ψ-RNA, as previously noted (21). 
RNA aptamer reporter vectors containing the RNA aptamer se-
quences in place of the Ψ sequence in the upstream of LacZ 
reporter gene in the pMV/AS-Psi(Ψ)/LacZ plasmid were con-
structed in order to measure the in vivo NC binding affinity of 
each of the RNA aptamers (22). Each of the resulting RNA ap-
tamer reporter vectors (pMV/AS-SE8-6/LacZ, pMV/AS-SE8-13/ 
LacZ and pMV/AS-SE90-20/LacZ) was transformed into E.coli 
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Fig. 3. Western blot and ONPG assay for Psi-NC, mutant NC inter-
action in E.coli. The levels of inhibition of β-galactosidase protein 
expression resulting from each RNA-NC interaction were de-
termined by western blot analysis using 12% SDS-polyacryamide 
gel, as described in Materials and Methods. Shown are each of the 
samples obtained at 3hr after IPTG induction. (A) β-galactosidase ac-
tivity of each RNA-NC interaction at 3 hrs after IPTG induction and 
(B) western blot results.

Fig. 4. β-galactosidase assay for the interaction of SW8.4 RNA ap-
tamer to the wild type and mutant NC protein. Shown is the 
binding activity of SW8.4 to the wild type and mutant NC pro-
teins determined, as described in Materials and Methods. The re-
porter gene activity was repressed approximately 88% with the 
wild type NC, 60% with 1351, 85% with 1352, and 0% with 
612, respectively. The experiment was performed in triplicate.

cells with and without the wild type NC as well as the NC 
zinc-finger mutant protein expression plasmids (pJC1/612, 
pJC1/1351, pJC1/1352), respectively. The wild type NC and its 
zinc-finger mutant NC protein were derived from a HIV NL4-3 
isolate instead of an ARV-2 isolate that was used previously 
(22). The β-galactosidase translation inhibition activities result-
ing from each interaction between NC and the RNA aptamers 
as well as the NC mutant proteins and RNA aptamers were 
then measured as described in Materials and Methods.
    In the case of Ψ-RNA as a control, the greatest inhibition of 
the reporter gene activity that represents the binding affinity 
between NC and Ψ was observed with the wild type NC. Each 
of NC zinc finger mutants shows varying degrees of binding 
affinity. The degree of inhibition of the β-galactosidase activity 
is NC > 1352 > 1351 > 612. This demonstrates that the zinc 
finger motif of the NC protein is important for recognizing 
Ψ-RNA. In particular, the first zinc finger domain is more im-
portant for specific binding to the Ψ-RNA sequences than the 
second zinc finger (Fig. 2A). This pattern of reporter gene ac-
tivity is indicative of the specific interaction between NC and 
Ψ-RNA, as previously reported (22).
    In the case of each RNA aptamer, the pattern of binding to 
the NC protein and NC zinc finger mutants is the same that 
with the Ψ-RNA (Fig. 2B, 2C, 2D). This means that all the ap-

tamer RNAs examined here show the highest binding affinity 
with the wild type NC and the same dependency of the zinc 
finger motif of NC protein. The result of the β-galactosidase ac-
tivity assay correlates well with the western blot data (Fig. 3). 
In order to further validate the assay system, another RNA ap-
tamer was tested, namely SW8.4 RNA isolated previously by 
Clever et al (2000) (23). Again, the pattern of reporter gene ac-
tivity with NC and the NC mutants is the same as that with 
Ψ-RNA and the other RNA aptamers (Fig. 4). This confirms 
that the cell-based assay developed for the NC-Ψ interaction 
can be further extended to NC-binding RNAs other than Ψ to 
measure its specific binding to NC. 
    It should be noted that not all the aptamers tested in this 
study had a higher binding affinity than Ψ, which is in contrast 
to that reported previously in vitro (Fig. 3A), where they were 
shown to have higher binding (at least 10-fold or higher) than 
Ψ RNA. Further studies will be needed to determined if this is 
because the structures of the aptamer RNAs in vitro do not 
properly reflect the in vivo condition, which are different with-
in cells, or because of the difference in the assays used even 
though the translational repression activity in this cell-based 
assay was proportional to the binding affinity between the pro-
tein of interest and its interacting RNAs, as previously reported 
(22, 24). In this regard, these results suggest that it is necessary 
to further confirm the binding activity of the NC aptamer RNAs 
identified in vitro under living cell conditions or in an appro-
priate cell-based assay shown here, particularly if the RNA ap-
tamers is intended to be used as an anti-viral agent against HIV 
in the future. 
    In summary, these results confirm for the first time the in vivo 
specific binding activity of SELEX NC aptamer RNAs identified 
in vitro and verify the utility and expandability of this cell-based 
assay to the interaction of NC and the NC specific RNAs.
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MATERIALS AND METHODS

Plasmids construction
The plasmids containing the SELEX RNA aptamers, pMV/AS- 
SE8-6/LacZ, pMV/AS-SE8-13/LacZ and pMV/AS-SE90-20/LacZ, 
were constructed as follows. Each SELEX RNA fragment was 
generated by PCR amplification using pUC19/SE8-6, pUC19/ 
SE8-13, and pUC19/SE90-20 (21). The SE8-6 sequence was 
amplified using the following primers: 5'-CAATACGTACGCG 
GAAGTACGACTGGGTA-3' and 5'-ATTCCTAGGACGGATAT 
CGGGAAGCGAGG-3'. The SE8-13 sequence was amplified 
by PCR using the following primers: 5'-CCCTACGTATATAGT 
GTGTTCAACGCTTA-3' and 5'-TGTCCTAGGCTCGTACAACG 
GACAAAAGT-3'. The SE90-20 sequence was amplified by 
PCR using the following primers: 5'-CCCTACGTAAATTGCAG 
TACGTAAAGTAT-3' and 5'-ATTCCTAGGCCATAGCGCATGT 
CCCAATG-3'. The PCR products of each SELEX aptamers were 
digested with SnaB I (Koschem, Korea) on the 5' terminal and 
Avr II (New England Biolabs, USA) on the 3' terminal (under-
lined), and then cloned into pMV/AS-Psi(Ψ)/LacZ, which had 
previously been optimized as a Ψ-independent plasmid (22), 
in place of the Ψ region by treating them with the same re-
striction enzymes. pMV/AS-SW8.4/LacZ was also constructed 
in a similar manner. The SW8.4 sequence shown in Fig. 1 was 
synthesized chemically by Genotech Inc. to contain the SnaB I 
site on the 5' terminal and the Avr II site on the 3' terminal 
(underlined). The SW8.4 oligomer was then inserted into 
pMV/AS13-Psi(Ψ)/LacZ using the SnaB I and Avr II restriction 
enzyme. 
    The NC and NC mutant plasmids were constructed as fol-
lows. The NC encoding sequence from the HIV NL4-3 isolate 
was amplified using the template, pLP1-NC (lab stock), and the 
following primers: 5'-CCAGATCTAGGAGGTTTAAAATAATG 
ATACAGAAAGGC-3' and 5'-ATTCTGCAGTCAATTAGCCTGT 
CTCTC-3'. The PCR product of NC was digested with Bgl II 
(Koschem, Korea) on the 5' terminal and Pst I (Roche, Switzer-
land) on the 3' terminal (underlined) and inserted into the 
pJC1 plasmid (25) using the same restriction enzyme. The NC 
mutant plasmids, pJC1/612, pJC1/1351 and pJC1/1352, were 
constructed using the same scheme for the NC plasmid shown 
above. Each NC zinc finger mutant, which has a replacement 
of cystein with serine, such as SSHS/SSHS (612), SSHS/CCHC 
(1351), CCHC/SSHS (1352) in place of the two original CCHC/ 
CCHC zinc finger of wild type NC, were generated by PCR 
amplification using the template pDB612, pDB1351, pDB1352 
(a gift of Dr. Gorelick in NCI, USA) and the same primers de-
scribed above and then inserted into pJC1 using Bgl II and Pst 
I. All the constructs were confirmed by DNA sequencing.

Transformation
Each SELEX aptamer plasmid, pMV/AS-SE8-6/LacZ, pMV/AS- 
SE8-13/LacZ, pMV/AS-SE90-20/LacZ and pMV/AS-SW8.4/LacZ, 
was co-transformed with the pJC1(∆NC), pJC1, pJC1/612, pJC1 

/1351 and pJC1/1352 in E.coli, JM109 strain (Promega Co., USA). 
In addition, the Psi-reporter vector, pMV/AS-Psi/LacZ, was trans-
formed with each NC and NC mutant plasmid as a comparison. 
Subsequently, the double transformants were selected from the 
LB plate containing 100 μg/ml of ampicillin (USB, USA) and 10 
μg/ml of tetracycline (Sigma Aldrich Co., USA)

β-galactosidase assay
The binding affinity of the SELEX aptamers for the NC protein 
was determined by measuring the β-galactosidase activity as 
described before (22). Briefly, the β-galactosidase activity was 
measured using the ONPG assay as follows. The double trans-
formants were inoculated in liquid LB media containing ampi-
cillin (100 μg/ml) and tetracycline (10 μg/ml) overnight at 37oC 
in a shaking incubator (250 rpm). On the next day, the trans-
formants were sub-cultured in a 1/10 dilution in fresh liquid 
LB media containing the same antibiotics and then further in-
cubated at 37oC in a shaking incubator until the OD600 
reached 0.3 to 0.4. LacZ gene expression was induced by add-
ing 1 mM isopropyl- β-D-thiogalactopyranoside (IPTG, Sigma) 
and incubated for 4 hours. The β-galactosidase activity was 
measured every hour. At the same time, the level of cell growth 
was determined by measuring the absorbance at 600 nm. 50 
μl of each sample was harvested and lysed with 20 μl of 0.1% 
of SDS, 20 μl of chloroform and 450 μl of Z-buffer (0.06 M 
Na2HPO4, 0.04 M NaHPO4, 0.01 M KCl, 1 mM MgSO4, 50 
mM β-mercaptoethanol) and vortexed. The samples were in-
cubated at RT for 5 min and 100 μl of o-nitrophenyl-D-thio-
galactopyranoside (ONPG, Sigma Aldrich Co., USA) were added 
and left to stand at RT for 5 min. The reaction was quenched 
with 200 μl of 1 M Na2CO3 and centrifuged at 4oC, 13000 
rpm for 5 min. 200 μl of the supernatant was used to measure 
the absorbance at 420 nm and 550 nm with a spectropho-
tometer (Infinite 200, TECAN, Austria).

Immunoblotting
At 3 hours after IPTG induction, samples containing an equal 
number of cells (OD600 = 1) were taken and centrifuged 12000 
rpm for 1 min. The pellet was resuspended in 80 μl of sterile 
water and 20 μl 5X sample buffer (60 mM Tris-HCl, 2% SDS, 
25% Glycerol, 0.1% bromophenol blue, β-mercaptoethanol) 
was then added. The samples were boiled for 10 min, centri-
fuged at 4oC at 14000 rpm for 20 min, and the supernatant 
was transferred to a new 1.5 ml tube. A 1/10 volume of the to-
tal protein was loaded in a 12% acrylamide gel and separated 
and transferred electrophoretically to a nitrocellulose filter 
membrane. A tris-Glycine electrophoresis buffer containing 
20% methanol was added and an electric current of 350 mA 
was applied for 90 min. The membrane was blocked with 5% 
non-fat milk (BD, USA) in 1X Tris-buffered saline containing 
0.05% tween20 for 40 min. The primary antibody was the anti 
β-galactosidase monoclonal antibody (Oncogene, USA) and 
the secondary antibody was HRP-Goat anti-mouse IgG con-
jugate (Zymed, USA).
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