Browse > Article

H2AX Directly Interacts with BRCA1 and BARD1 via its NLS and BRCT Domain Respectively in vitro  

Bae, Seung-Hee (Department of Microbial Engineering, Konkuk University)
Lee, Sun-Mi (Department of Microbial Engineering, Konkuk University)
Kim, Su-Mi (Functional Genoproteome Research Centre, Konkuk University)
Choe, Tae-Boo (Department of Microbial Engineering, Konkuk University)
Kim, Cha-Soon (Division of Radiation Effect Research, Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., LTD.)
Seong, Ki-Moon (Division of Radiation Effect Research, Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., LTD.)
Jin, Young-Woo (Division of Radiation Effect Research, Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., LTD.)
An, Sung-Kwan (Department of Microbial Engineering, Konkuk University)
Publication Information
KSBB Journal / v.24, no.4, 2009 , pp. 403-409 More about this Journal
Abstract
H2AX, a crucial component of chromatin, is implicated in DNA repair, cell cycle check point and tumor suppression. The aim of this study was to identify direct binding partners of H2AX to regulate cellular responses to above mechanisms. Literature reviews and bioinformatical tools were attempted intensively to find binding partners of H2AX, which resulted in identifying two potential proteins, breast cancer-1 (BRCA1) and BRCA1-associated RING domain 1 (BARD1). Although it has been reported in vivo that BRCA1 co-localizes with H2AX at the site of DNA damage, their biochemical mechanism for H2AX were however only known that the complex monoubiquitinates histone monomers, including unphosphorylated H2AX in vitro. Therefore, it is important to know whether the complex directly interacts with H2AX, and also which regions of these are specifically mediated for the interaction. Using in vitro GST pull-down assay, we present here that BRCA1 and BARD1 directly bind to H2AX. Moreover, through combinational approaches of domain analysis, fragment clonings and in vitro binding assay, we revealed molecular details of the BRCA1-H2AX and BARD1-H2AX complex. These data provide the potential evidence that each of the BRCA1 nuclear localization signal (NLS) and BARD1 BRCA1 C-terminal (BRCT) repeat domain is the novel mediator of H2AX recognition.
Keywords
H2AX; BRCA1; BARD1; interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kinner, A., W. Wu, C. Staudt, and G. lliakis (2008), $\gamma$-H2AX in recognition and signaling of DNA doublestrand breaks in the context of chromatin, Nucleic Acid Res. 36, 5678-5694   DOI   ScienceOn
2 Lukas, C., J. Falck, J. Bartkova, J. Bartek, and J. Lukas (2003), Distinct spatiotemporal dynamics of mammalian chεckpoint regulators induced by DNA damage, Nat. Cell. Biol. 5, 255-260   DOI   ScienceOn
3 Nathanson, K. N., R. Wooster, and B. L. Weber (2001), Breast cancer genetics : what we know and what we need, Nat. Med. 7, 552-556   DOI   ScienceOn
4 Ghimenti C., E. Sensi, S. Presciuttini, I. M. Brunetti, P. Conte, G. Bevilacqua, and M. A. Caligo (2002), Germline mutations of the BRCA 1-associated ring domain (BARDl) gene in breast and breastlovarian families nεgative for BRCAl and BRCA2 alterations, Genes Chrom. Cancer 33, 235-242   DOI   ScienceOn
5 Krum S. A., G. A. Miranda, C. Lin, and T. F. Lane (2003), BRCAl associates with processive RNA polymerase II, J. Biol. Chem. 278, 52012-52020   DOI   ScienceOn
6 Kleiman F. E. and J. L. Manley (1999), Functional interaction of BRCA 1-associated BARD 1 with polyadeny1ation factor CstF-50, Science 285, 1576-1579   DOI   PUBMED   ScienceOn
7 EBI-Harvester http://harvester. embl. de
8 Celeste, A., S. Difilippantonio, M. J. Difilippantonio, O. Femandez-Capetillo, D. R. Pilch, O. A. Sedelnikova, M.Eckhaus, T. Ried, W. M. Bonner, and A Nussenzweig (2003), H2AX haploinsufficiency modifies genomic stability and tumor suscεptibility, Cell 114, 371-383   DOI   ScienceOn
9 Kobayashi J., H. Tauchi, S. Sakamoto, A. Nakamura, K. Morishima, S. Matsuura, T. Kobayashi, K. Tamai, K. Tanimoto, and K. Komatsu (2002), Nbs1 localizes to gamma-H2AX foci through interaction with the FHAlBRCT domain, Curr. Biol. 12, 1846-1851   DOI   ScienceOn
10 Chang J. T. and J. R. Nevins (2006), GATHER : a systems approach to interpreting genomic signatures, Bioinformatics 22, 2926-2933. http://gather. genome. duke.edu/   DOI   ScienceOn
11 Lee J. H. and T. T. Paull (2004), Direct activation of the ATM protein kinase by the Mrell/Rad50/Nbs1 complex, Science 304, 93-96   DOI   PUBMED   ScienceOn
12 Stucki M., Clapperton J. A., Mohammad D., Yaffe M. B., Smerdon S. J., and S. P. Jackson (2005), MDCl directly binds phosphorylated histone H2AX to regulates cellular response to DNA doub1e-strand breaks, Cell 123, 1213-1226   DOI   ScienceOn
13 Coπez, D., Y. Wang, J. Qin, and S. J. Elledge (1999), Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks, Science 286, 1162-1166   DOI   PUBMED   ScienceOn
14 Rodriguez J. A., S. Schuchner, W. W. Au, M. Fabbro, and B. R. Henderson (2004), Nuclear-cytoplasmic shuttling of BARD 1 contributes to its proapoptotic activity and is regulated by dimerization with BRCAl, Oncogene 23, 1809-1820   DOI   ScienceOn
15 Celeste, A., O. Femandez-Capetillo, M. J. Kruhlak, D. R. Pilch, D. W. Staudt, A Lee, R. F. Bonner, W. M. Bonner, and A. Nussenzwεig (2003), Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks, Nat. Cell. Biol. 5, 675-679   DOI   ScienceOn
16 Rogakou, E. P., D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner (1998), DNA doubte-stranded breaks induce histone H2AX phosphorylation on serine 139, J. Biol. Chem. 273, 5858-5868   DOI   ScienceOn
17 Ward I. M., K. Minn, K. G. Jorda, and J. Chen (2003), Accumulation of checkpoint protein 53BPl at DNA breaks involves its binding to phosphorylated histone H2AX, J. Biol. Chem. 278, 19579-19582   DOI   ScienceOn
18 NCBI, http://www.ncbi.nlm.nih.gov/
19 Yarden, R. I., S. Pardo-Reoyo, M. Sgagias, K. H. Cowan, and L. C. Brody (2002), BRCAl regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage, Nat. Genet. 30, 285-289   DOI   ScienceOn
20 Letunic I., R. R. Copley, B. Pils, S. Pinkert, J. Schultz, and P. Bork (2006), SMART 5 : domains in the context of genomes and networks, Nucleic Acids Res. 34, 257-260. http://smart.embl-heidelberg.de/   DOI   ScienceOn
21 Femandez-Capetillo, O., H. T. Chen, A Celeste, I Ward, P. J. Romanienko, J. C. Morales, K. Naka, Z. Xia, R. D. Camerini-Otero, N. Motoyama, P. B. Carpenter, W. M. Bonner, J. Chen, and A. Nussenzweig (2002), DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BPl, Nat. Cell Biol. 4, 993-997   DOI   ScienceOn
22 Burma S., Chen B. P., Murphy M., Kurimasa A., and D. J. Chen (2001), ATM phosphorylates histone H2AX in response to DNA double-strand breaks, J. Biol. Chem. 276, 42462-42467   DOI   ScienceOn
23 Scully, R., J. Chen, R. L. Ochs, K. Keegan , M. Hoekstra, J. Feunteun, and D. M. Livingston (1997), Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage, Cell 8, 425-435   DOI   ScienceOn
24 Celeste, A., S. Petersen, P. J. Romanienko, O. Femandez-CapetilIo, H. T. Chen, O. V. Sedelnikova, B. Reina-San-Martin, V. Coppola, E. Meffre, and M. J. Difilippantonio (2002), Genomic instability in mice lacking histone H2AX, Science 296, 922-927   DOI   PUBMED   ScienceOn
25 Canman C. E. (2003), Checkpoint mediators: relaying signals from DNA strand breaks, Curr. Biol. 13, 488-490   DOI   ScienceOn