• Title/Summary/Keyword: In situ transesterification

Search Result 6, Processing Time 0.016 seconds

Production Biodiesel via In-situ Transesterification from Chlorella sp. using Microwave with Base Catalyst

  • Kalsum, Ummu;Kusuma, Heri Septya;Roesyadi, Achmad;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.773-778
    • /
    • 2018
  • In-situ transesterification of microalgae lipids using microwave irradiation has potential to simplify and accelerate biodiesel production, as it minimizes production cost and reaction time by direct transesterification of microalgae into biodiesel with microwave as a heating source. This study was conducted to research the effect of microwave irradiation with in-situ transesterification of microalgae under base catalyst condition. The process variables (reaction time, solvent ratio, microwave power) were studied using 2% of catalyst concentration. The maximum yield of FAME was obtained at about 32.18% at the reaction time of 30 min with biomass-methanol ratio 1:12 (w/v) and microwave power of 450 W. The GC MS analysis obtained that the main component of FAME from microalgal oils (or lipids) was palmitic acid, stearic acid and oleic acid. The results show that microwaves can be used as a heating source to synthesize biodiesel from microalgae in terms of major components resulting.

The usability evaluation of domestic urban sewage sludge as feedstock for biodiesel production( I ) - Comparison of the yields and composition of fatty acid methyl esters - (바이오디젤 생산을 위한 원료로서 국내 도시 하수슬러지의 활용성 평가( I ) - 지방산메틸에스테르(FAMEs)의 수율 및 조성 비교 -)

  • Kim, Nack-Joo;Jung, You-Won;Lee, Ik-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • This study was performed to assess the possibility of application of sewage sludge which is the side-product from domestic sewage treatment plant to the materials for biodiesels by investigating the yields and composition of the lipids and fatty acid methyl esters(FAMEs) from soxhlet extraction and in-situ transesterification. As the results, yields of in-situ transesterification were higher than soxhlet extraction. In comparison by sewage sludge type, yields of sewage sludge mixed nightsoil or livestock were higher than a single sewage sludge. And maximum yield showed up to 14 wt%. Fatty acid composition of extracted lipids and synthesized FAMEs consists of palmitic acid(C16:0), palmitoleic acid(C16:1), stearic acid(C18:0), oleic acid(C18:1), and linoleic acid(C18:2).

In situ Transesterification/Reactive Extraction of Castor Bean Seeds Assisted by Flying Jet Plasma for Biodiesel Production

  • Elsheikh, Yasir A.;Abdul-Majeed, Wameath S.;Nasir, Qazi;Al-Rahbi, Balaqis;Al-Subhi, Noor;Mahmoud, Mohamed A.;AAl-Thani, Ghanim S.
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.538-544
    • /
    • 2022
  • One of the most exciting areas for the development of alternative fuels is the production of biodiesel. To reduce the cost of biodiesel production, in situ trans-esterification has been introduced to simplify the production process by enabling extraction and trans-esterification to occur at a single stage in the presence of a catalyst. In this study, we investigated the feasibility of using non-corrosive and environmentally receptive flying jet plasma as an alternative catalytic route for in situ tran-sesterification of castor bean seeds (CBS). Upon optimizing the reaction conditions, it is elucidated that applying a low ratio of methanol to seeds (≤6:1) has resulted in hindering the in situ trans-esterification and leading to insignificant conversion. The yield of esters has increased from 80.5% to 91.7% as the molar ratio rose from 9:1 to 12:1. Excess alcohol beyond the ratio of 15:1 was shown to have a negative impact on the yield of the produced esters, attributed to an increase in the biodiesel portion prone to dissolving in the co-product (glycerol). An increase in the reaction bulk temperature from 40 to 55 ℃ led to a higher ester content by 50%. Further increases in the bulk temperature beyond 55 ℃ did not affect yields. Regarding the reaction period, the results have shown that 3 h of reaction is adequate for a higher biodiesel yield. The quality of the biodiesel obtained has demonstrated that all physicochemical properties meet the ASTM D6751 specifications.

Transesterification Reaction between Liquid Crystalline Polyester and Poly(butylene terephthalate) (액정 폴리에스테르와 Poly(butylene terephthalate)의 에스테르 교환반응)

  • Han, Do Soo;Kim, Doo Hwa;Cho, Sung Dong;Jo, Byung Wook
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.3
    • /
    • pp.157-165
    • /
    • 1997
  • The transesterification reaction could be used to the technical production as it forms an in-situ compatibilizer during the processing of polymer blends. Thus, TR-4,6(poly(tetramethylene-4,4'-terephthaloyldioxydibenzoate-co-hexametylene-4,4'-terephthaloyldioxydibenzoate), one of thermotropic liquid crystalline polymers was synthesized and was blended with PBT(polybutylene terephthalate), one of engineering plastics, to study the transesterification reaction. The transesterification reactions between two components, TR-4,6 and PBT, were monitored by IR, DSC and $^{13}C-NMR$ and analyzed by a statistical treatment method. Also, the reaction rates and the sequence distributions of repeating unit were (calculated and) invesitigated.

  • PDF

Synthesis and Characterization of Allyl Ester Resin-Layered Silicate Nanocomposite (알릴 에스터 수지-층상 실리케이트 나노복합재료의 합성과 특성)

  • 팽세웅;김장엽;허완수;조길원;이상원
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • Polymer-clay nanocomposite containing the low amounts of clay shows improved physical, mechanical properties. In this study, allyl ester prepolymer was synthesised by reactions of the diallyl terephthalate monomers and the 1,3-butanediol monomers. Nanocomposites of allyl ester prepolymer and the two kinds of the organically layered silicate were prepared by using the intercalation method as well as the in-situ polymerization method using. By varying the amount of clay content, curing conditions, and feeding conditions. the nanocomposite was studied using X-ray diffraction. From XRD results, allyl ester-Cloisite 30 B nanocomposite made by the in-situ polymerization method shows better exfoliation behavior compared with the intercalation method. It can be said that the transesterification reaction between functional groups (-OH) of intercalant and monomers results in the increased gallery distance. Also mechanical and thermal properties indicate that the dispersity of clay is an important factor for improving physical properties of the nanocomposite.

Biodiesel Production Technology from Sewage Sludge (하수 슬러지로부터 바이오디젤 생산기술)

  • Kim, Jae-Kon;Park, Jo-Yong;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.688-700
    • /
    • 2013
  • The potential of biodiesel production technology using lipids extracted from sewage sludge was investigated. Despite the bright prospect of biodiesel production, efforts to commercialize it have been very limited. One of the major obstacles has been the high price associated with refined oil feedstock, which makes up nearly 70-75% of the total production costs. Hence, in order to reduce the cost of biodiesel production, using cheaper feedstock such as waste oil or low-quality oil has been proposed. Especially, sewage sludge, a relatively inexpensive feedstock, is a promising raw material for such a purpose. In this study, it is aimed to review biodiesel production technology from sewage sludge as a lipid feedstock. It is process modifications to combine the oil extraction steps, fuel conversion steps (i.e. in situ transesterification, thermo-chemical process with non-catalytic heterogeneous biodiesel production) and fuel quality from sewage sludge.