Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.5.773

Production Biodiesel via In-situ Transesterification from Chlorella sp. using Microwave with Base Catalyst  

Kalsum, Ummu (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember)
Kusuma, Heri Septya (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember)
Roesyadi, Achmad (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember)
Mahfud, Mahfud (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember)
Publication Information
Korean Chemical Engineering Research / v.56, no.5, 2018 , pp. 773-778 More about this Journal
Abstract
In-situ transesterification of microalgae lipids using microwave irradiation has potential to simplify and accelerate biodiesel production, as it minimizes production cost and reaction time by direct transesterification of microalgae into biodiesel with microwave as a heating source. This study was conducted to research the effect of microwave irradiation with in-situ transesterification of microalgae under base catalyst condition. The process variables (reaction time, solvent ratio, microwave power) were studied using 2% of catalyst concentration. The maximum yield of FAME was obtained at about 32.18% at the reaction time of 30 min with biomass-methanol ratio 1:12 (w/v) and microwave power of 450 W. The GC MS analysis obtained that the main component of FAME from microalgal oils (or lipids) was palmitic acid, stearic acid and oleic acid. The results show that microwaves can be used as a heating source to synthesize biodiesel from microalgae in terms of major components resulting.
Keywords
Base catalyzed; in-situ transesterification; Microwave; Microalgae; Chlorella sp;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Putri, D. K. Y., Kusuma, H. S., Syahputra, M. E., Parasandi, D. and Mahfud, M., "The Extraction of Essential oil from Patchouli Leaves (Pogostemon cablin Benth) Using Microwave Hydrodistillation and Solvent-free Microwave Extraction Methods," IOP Conf. Ser. Earth Environ. Sci., 101, 1-7(2017).
2 Ismanto, A. W., Kusuma, H. S. and Mahfud, M., "Comparison of Microwave Hydrodistillation and Solvent-free Microwave Extraction of Essential oil from Melaleuca Leucadendra Linn," IOP Conf. Ser. Earth Environ. Sci., 101, 1-6(2017).
3 Ismanto, A. W., Kusuma, H. S. and Mahfud, M., Solvent-free Microwave Extraction of Essential oil from Melaleuca Leucadendra L. In MATEC Web of Conferences. pp. 1-4. The 24th Regional Symposium on Chemical Engineering (RSCE 2017), Semarang (2018).
4 Kusuma, H. S., Altway, A. and Mahfud, M., "Alternative to Conventional Extraction of Vetiver Oil: Microwave Hydrodistillation of Essential oil from Vetiver Roots (Vetiveria zizanioi- des)," IOP Conf. Ser. Earth Environ. Sci., 101, 1-8(2017).
5 Kusuma, H. S., Altway, A. and Mahfud, M., "Solvent-free Microwave Extraction of Essential oil from Dried Patchouli (Pogostemon cablin Benth) Leaves," J. Ind. Eng. Chem., 58, 343-348(2018).   DOI
6 Koberg, M., Cohen, M., Ben-Amotz, A. and Gedanken, A., "Bio-diesel Production Directly from the Microalgae Biomass of Nannochloropsis by Microwave and Ultrasound Radiation," Bioresour. Technol., 102, 4265-4269(2011).   DOI
7 Teo, C. L. and Idris, A., "Evaluation of Direct Transesterification of Microalgae Using Microwave Irradiation," Bioresour. Technol., 174, 281-285(2014).   DOI
8 Mahfud, M., Suryanto, A., Qadariyah, L., Suprapto, S. and Kusuma, H. S., "Production of Methyl Ester from Coconut oil Using Microwave: Kinetic of Transesterification Reaction Using Heterogeneous CaO Catalyst," Korean Chem. Eng. Res., 56, 275-280 (2018).
9 Chee, L. T. and Idris, A., "Rapid Alkali Catalyzed Transesterification of Microalgae Lipids to Biodiesel Using Simultaneous Cooling and Microwave Heating and its Optimization," Bioresour. Technol., 174, 311-315(2014).   DOI
10 Wahidin, S., Idris, A. and Shaleh, S. R. M., "Rapid Biodiesel Production Using Wet Microalgae via Microwave Irradiation," Energy Convers. Manag., 84, 227-233(2014).   DOI
11 Velasquez-Orta, S. B., Lee, J. G. M. and Harvey, A., "Alkaline in situ Transesterification of Chlorella Vulgaris," Fuel, 94, 544-550 (2012).   DOI
12 Nomanbhay, S. and Ong, M. Y., "A Review of Microwave-assisted Reactions for Biodiesel Production," Bioengineering, 4, 1-21(2017).   DOI
13 Miao, X., Li, R. and Yao, H., "Effective Acid-catalyzed Transesterification for Biodiesel Production," Energy Convers. Manag., 50, 2680-2684(2009).   DOI
14 Mubarak, M., Shaija, A. and Suchithra, T. V., "A Review on the Extraction of Lipid from Microalgae for Biodiesel Production," Algal Res., 7, 117-123(2015).   DOI
15 Mulbry, W., Kondrad, S., Buyer, J. and Luthria, D. L., "Optimization of an oil Extraction Process for Algae from the Treatment of Manure Effluent," J. Am. Oil Chem. Soc., 86, 909-915(2009).   DOI
16 Patil, P. D., Gude, V. G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S., Rhodes, I., Lammers, P. and Nirmalakhandan, N., "Optimization of Direct Conversion of wet Algae to Biodiesel Under Supercritical Methanol Conditions," Bioresour. Technol., 102, 118-122(2011).   DOI
17 Martinez-Guerra, E., Gude, V.G., Mondala, A., Holmes, W. and Hernandez, R., "Extractive-transesterification of Algal Lipids Under Microwave Irradiation with Hexane as Solvent," Bioresour. Technol., 156, 240-247(2014).   DOI
18 Caddick, S. and Fitzmaurice, R., "Microwave Enhanced Synthesis," Tetrahedron, 65, 3325-3355(2009).   DOI
19 Dinh, L. T. T., Guo, Y. and Mannan, M. S., "Sustainability Eval- uation of Biodiesel Production Using Multicriteria Decision‐making," Environ. Prog. Sustain. Energy, 28, 38-46(2009).   DOI
20 Ehimen, E. A., Sun, Z. F. and Carrington, C. G., "Variables Affecting the in situ Transesterification of Microalgae Lipids Fuel, 89, 677-684(2010).   DOI
21 Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A. and Goodwin, J. G., "Synthesis of Biodiesel via Acid Catalysis," Ind. Eng. Chem. Res., 44, 5353-5363(2005).   DOI
22 Johnson, M. B. and Wen, Z., "Production of Biodiesel Fuel from the Microalga Schizochytrium Limacinum by Direct Transesterification of Algal Biomass," Energy and Fuels, 23, 5179-5183 (2009).   DOI
23 Xu, R. and Mi, Y., "Simplifying the Process of Microalgal Bio-diesel Production Through in situ Transesterification Technology," J. Am. Oil Chem. Soc., 88, 91-99(2011).   DOI
24 Vyas, A. P., Verma, J. L. and Subrahmanyam, N., "A Review on FAME Production Processes," Fuel. 89, 1-9(2010).   DOI
25 Kusuma, H. S., Altway, A. and Mahfud, M., "A Preliminary Study of Patchouli Oil Extraction by Microwave Air-hydrodistillation Method," Korean Chem. Eng. Res., 55, 510-513(2017).
26 Kusuma, H. S., Rohadi, T. I., Daniswara, E. F., Altway, A. and Mahfud, M., "Preliminary Study: Comparison of Kinetic Models of Oil Extraction from Vetiver (Vetiveria zizanioides) by Microwave Hydrodistillation," Korean Chem. Eng. Res., 55, 574-577(2017).