• Title/Summary/Keyword: In situ microscopy

Search Result 259, Processing Time 0.023 seconds

Early Stage Growth Structure and Stress Relaxation of CoCrPt Thin Films on Spherically Modulated Polymer Surface

  • Kim, Sa-Rah;Jeong, Jun-Ho;Shin, Sung-Chul;Son, Vo Thanh;Jeon, Bo-Geon;Kim, Cheol-Gi;Jeong, Jong-Ryul
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2010
  • Combined study of in-situ stress measurements and atomic force microscopy (AFM) revealed drastic stress relaxation in the CoCrPt and PS(styrene)-PVP(vinyl pyridine) polymer hybrid structure that was closely related to the growth structure of the film. We have observed not only no large initial growth stress at the initial stages of film growth but also twice smaller stress in magnitude with opposite sign in the CoCrPt/PS-PVP/Si sample. The microstructural studies using AFM at the various film growth stages revealed that the film growth structure plays an important role in the stress relaxation mechanism of CoCrPt films on a corrugated polymer surface.

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang;Koh, Kwangnak;Ryu, Su-Chak;Han, Dong-Wook;Lee, Jaebeom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3950-3956
    • /
    • 2012
  • In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.

Localization of Germin Genes and Their Products in Developing Wheat Coleoptiles

  • Caliskan, Mahmut;Ozcan, Birgul;Turan, Cemal;Cuming, Andrew C.
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.339-342
    • /
    • 2004
  • Germination is a process which characterized with nescient synthesis of genes. Among the genes synthesized during the germination of wheat embryos, germin genes, proteins and their enzymatic activity were defined. Germin is a water soluble homopentameric glycoprotein which is remarkable resistant to degradation by a broad range of proteases including pepsin. Germin proteins found to have strong oxalate oxidase activity which produces hydrogen peroxide by degrading oxalic acid. The current study, aimed to localize the germin genes, proteins and enzymatic activities in developing coleoptiles which is a rapidly growing protective tissue of leaf primordium and shoot apex. Non-radioactively abeled germin riboprobes were employed to localize germin mRNAs in situ. FITC (Fluorescein isothiocyanate) and alkaline phosphatase linked anti-germin antibodies were used to localize germin proteins under the fluorescence and light microscopy and finally germin enzymatic activity was localized by using appropriate enzyme assay. The results revealed that in coleoptiles germin genes, proteins and their enzymatic activity were predominantly associated with the cells of epidermis and vascular bundle sheath cells.

Novel Composite Membranes Comprising Silver Salts Physically Dispersed in Poly(ethylene-co-propylene) for the Separation of Propylene/Propane

  • Kim, Jong-Hak;Min, Byoung-Ryul;Kim, Yong-Woo;Kang, Sang-Wook;Won, Jong-Ok;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2007
  • Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.

Preparation, Characterization and Low Frequency a.c. Conduction of Polypyrrole-Lead Titanate Composites

  • Basavaraja, C.;Choi, Young-Min;Park, Hyun-Tae;Huh, Do-Sung;Lee, Jae-Wook;Revanasiddappa, M.;Raghavendra, S.C.;Khasim, S.;Vishnuvardhan, T.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1104-1108
    • /
    • 2007
  • Conducting Polypyrrole-lead titanate (PPy/PbTiO3) composites have been prepared by in situ deposition technique by placing different wt.% of fine grade powder of PbTiO3 (10, 20, 30, 40, and 50%) during polymerization of pyrrole. The composites formed were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), and these data indicate that PbTiO3 particles are dominating with an increase in crystallinity as well as thermal stability of the composites. The results on the low frequency dielectric studies which are obtained in the form of pressed pellet state are interpreted in terms of Maxwell Wagner polarization, which are responsible for the dielectric relaxation mechanism and frequency dependence of conductivity.

Investigation of Oxygen Incorporation in AlGaN/GaN Heterostructures

  • Jang, Ho-Won;Baik, Jeong-Min;Lee, Jong-Lam;Shin, Hyun-Joon;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.96-101
    • /
    • 2003
  • Direct evidence on the incorporation of high concentration of oxygen into undoped AlGaN layers for the AlGaN/GaN heterostuctures is provided by scanning photoemission microscopy using synchrotron radiation. In-situ annealing at $1000^{\circ}C$ resulted in a significant increase in the oxygen concentration at the AlGaN surface due to the predominant formation of Al-O bonds. The oxygen incorporation into the AlGaN layers resulting from the high reactivity of Al to oxygen can enhance the tunneling-assisted transport of electrons at the metal/AlGaN interface, leading to the reduction of the Schottky barrier height and the increase of the sheet carrier concentration near the AlGaN/GaN interface.

Characterization of Dicyclopentadiene and 5-Ethylidene-2-norbornene as Self-healing Agents for Polymer Composite and Its Microcapsules

  • Lee, Jong-Keun;Hong, Sun-Ji;Xing Liu;Yoon, Sung-Ho
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.478-483
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB)] as self-healing agents for polymeric composites were microencapsuled by in situ polymerization of urea and formaldehyde. We obtained plots of the storage modulus (G') and tan $\delta$ as a function of cure time by using dynamic mechanical analysis to investigate the cure behavior of the unreacted self-healing agent mixture in the presence of a catalyst. Glass transition temperatures (T$\_$g/) and exothermic reactions of samples cured for 5 and 120 min in the presence of different amounts of the catalyst were analyzed by differential scanning calorimetry. Of the two dienes, ENB may have advantages as a self-healing agent because, when cured under same conditions as DCPD, it reacts much faster in the presence of a much lower amount of catalyst, has no melting point, and produces a resin that has a higher value of T$\_$g/. Microcapsules containing the healing agent were successfully formed from both of the diene monomers and were characterized by thermogravimetric analysis. Optical microscopy and a particle size analyzer were employed to observe the morphology and size distribution, respectively, of the microcapsules. The microcapsules exhibited similar thermal properties as well as particle shapes and sizes.

Growth of Dendrites in the Unidirectionally Solidified Pivalic Acid-Ethanol System (일방향응고시킨 Pivalic Acid-Ethanol 계에서의 Dendrite의 성장)

  • Suk, Myung-Jin;Park, Young-Min
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.191-197
    • /
    • 2011
  • Transparent organic materials have been frequently used as an analog of the solidifying metallic materials, because their transparency permits an in-situ observation of the microstructural development during solidification through optical microscopy. Pivalic acid (PVA)-ethanol system showing an anisotropic property in solid-liquid interfacial energy and interface kinetics was adopted in the present experiment, and the detailed experiments performed are as follows: (1) variation of dendrite tip temperature with growth velocity, (2) correlation between primary dendrite arm spacing (${\lambda}_1$) and the growth orientation away from the heat flow direction (tilt angle: ${\theta}$), (3) variation of dendrite tip radius (R) with growth velocity (V), (4) dendrite tip stability parameter (${\sigma}^*$) and its dependence on the concentration. Concerning the correlation between the dendrite tip temperature and growth velocity the present result is well suited to Hunt-Lu equation. As the tilt angle increases, the average primary dendrite spacing tends to increase.

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

The Plasma Modification of Polycarbonate and Polyethersulphone Substrates for Ta2O5 Thin Film Deposition (Ta2O5 박막증착에서 플라즈마 전 처리를 통한 Polycarbonate와 Polyethersulphone 기판의 표면 개질)

  • Kang, Sam-Mook;Yoon, Seok-Gyu;Jung, Won-Suk;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.38-41
    • /
    • 2006
  • Surface of PC (Polycarbonate) and PES (Polyethersulphone) treated by plasma modification with rf power from 50 W to 200 W substrates in Ar (3 sccm), $O_2$ (12 sccm) atmosphere. From the results of modified substrates in XPS (X-ray Photoelectron Spectroscopy), the ratio of oxide containing bond increased with rf power. As the rf power was 200 W, the contact angle was the lowest value of 14.09 degree. And the datum from AFM (Atomic Force Microscopy), rms roughness value of PES and PC substrates increased with rf power. We could deposit $Ta_2O_5$ with good adhesion on plasma treated PES and PC substrates using by in-situ rf magnetron sputter.