Browse > Article

Investigation of Oxygen Incorporation in AlGaN/GaN Heterostructures  

Jang, Ho-Won (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH))
Baik, Jeong-Min (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH))
Lee, Jong-Lam (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH))
Shin, Hyun-Joon (Beamline Department, Pohang University of Science and Technology(POSTECH))
Lee, Jung-Hee (School of Electronic Engineering and Computer Science, Kyungpook National University)
Publication Information
Abstract
Direct evidence on the incorporation of high concentration of oxygen into undoped AlGaN layers for the AlGaN/GaN heterostuctures is provided by scanning photoemission microscopy using synchrotron radiation. In-situ annealing at $1000^{\circ}C$ resulted in a significant increase in the oxygen concentration at the AlGaN surface due to the predominant formation of Al-O bonds. The oxygen incorporation into the AlGaN layers resulting from the high reactivity of Al to oxygen can enhance the tunneling-assisted transport of electrons at the metal/AlGaN interface, leading to the reduction of the Schottky barrier height and the increase of the sheet carrier concentration near the AlGaN/GaN interface.
Keywords
AlGaN/GaN heterostructures; oxy-gen; unintentional doping; SPEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Ambacher et al., J. Phys.: Condens. Matter 14, 3399 (2002)   DOI   ScienceOn
2 C. R. Elsass, T. Mates, B. Heying, C. Poblenz, P. Fini, P. M. Petroff, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 77, 3167 (2000)   DOI   ScienceOn
3 W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys. Lett. 68, 3144 (1996)   DOI   ScienceOn
4 O. Ambacher et al. J. Appl. Phys. 87, 334 (2000)   DOI   ScienceOn
5 H. W. Jang, J. K. Kim, J.-L. Lee, J. Schroeder, and T. Sands, Appl. Phys. Lett. 82, 580 (2003)   DOI   ScienceOn
6 S. D. Walter, J. M. DeLucca, S. E. Mohney, R. S. Kern, and C. P. Cuo, Thin Solid Films 371, 153 (2000)   DOI   ScienceOn
7 B. Ihsan, Thermochemical Data of Pure Substances (VCH Publishers, New York, NY, 1987)
8 I. Shalish, Y. Shapira, L. Burstein, and J. Salzman, J. Appl. Phys. 89, 390 (2001)   DOI   ScienceOn
9 J. F. Mouler, W. F. Strickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy(Perkin-Elmer, Eden Prairie, MN, 1992)
10 C. Amano, K. Ando, and M. Yamaguchi, J. Appl. Phys. 63, 2853 (1988)   DOI
11 J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 2953 (1998)   DOI
12 T. Mattila and R. M. Nieminen, Phys. Rev. B 55, 9571 (1997)   DOI   ScienceOn
13 J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaas. J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. 77, 250 (2000)   DOI   ScienceOn
14 H. W. Jang, C. M. Jeon, K. H. Kim, J. K. Kim, S.-B. Bae, J. -H. Lee, J. W. Choi, and J.-L. Lee, Appl. Phys, Lett. 81, 1249 (2002)   DOI   ScienceOn
15 K. A. Prior, G. J. Davies, and R. Heckingbottom, J. Cryst. Growth 66, 55 (1984)   DOI   ScienceOn
16 C.R.Abernathy et al., J. Semicond. Tech. Sci. 3, 13 (2003)
17 P. M. Asbeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Van Hove, and J. Redwing, Electron. Lett. 33, 1230 (1997)   DOI   ScienceOn
18 I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, J. Appl. Phys. 86, 4520 (1999)   DOI