• Title/Summary/Keyword: In situ measurements

Search Result 522, Processing Time 0.03 seconds

Derivation of the Ambient Nitrogen Dioxide Mixing Ratio over a Traffic Road Site Based on Simultaneous Measurements Using a Ground-based UV Scanning Spectrograph

  • Lee, Han-Lim;Noh, Young-Min;Ryu, Jae-Yong;Hwang, Jung-Bae;Won, Yong-Gwan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.96-102
    • /
    • 2011
  • Simultaneous measurements using a scanning spectrograph system and transmissometer were performed for the first time over an urban site in Gwangju, Korea, to derive the ambient $NO_2$ volume mixing ratio. The differential slant column densities retrieved from the scanning spectrograph system were converted to volume mixing ratios using the light traveling distance along the scanning line of sight derived from the transmissometer light extinction coefficients. To assess the performance of this system, we compared the derived $NO_2$ volume mixing ratios with those measured by an in situ chemiluminescence monitor under various atmospheric conditions. For a cloudless atmosphere, the linear correlation coefficient (R) between the two data sets (i.e., data derived from the scanning spectrograph and from the in situ monitor) was 0.81; the value for a cloudy atmosphere was 0.69. The two sets of $NO_2$ volume mixing ratios were also compared for various wind speeds. We also consider the measurement errors, as estimated from an error propagation analysis.

The Frequency and Length Dependence of the Target Strength of the Largehead Hairtail (Trichiurus lepturus) in Korean Waters

  • HwangBo, Young;Lee, Dae-Jae;Lee, Yoo-Won;Lee, Kyoung-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.152-161
    • /
    • 2009
  • The largehead hairtail (Trichiurus lepturus) is one of the most common fisheries stocks in the East China Sea and the Yellow Sea. The species is caught using a variety of fishing tools, such as a stow net or a long line, as well as jigging and trawling. Scientific investigations have been conducted throughout the world to enable evidence-based estimations for the management and protection of the main fisheries biomass. For example, inshore and offshore hydro acoustic surveys are performed annually using bottom- and mid-water trawls around the Korean Peninsula. However, to date, no acoustic survey has been conducted to estimate fish size distribution, which is necessary to construct a data bank of target strength (TS) relative to fish species, length (L), and frequency. This study describes the frequency and length dependence of TS among fishes in Korean waters for the purpose of constructing such a TS data bank. TS measurements of the largehead hairtail were carried out in a water tank (L 5 m$\times$width 6 m$\times$ height 5 m) at frequencies of 50, 75, 120, and 200 kHz, using a tethering method. The average TS patterns were measured as a function of tilt angle, ranging from $-45^{\circ}$ (head down) to $+45^{\circ}$ (head up) every $0.2^{\circ}$. The length conversion constant ($b_{20}$) was estimated under the assumption that TS is proportional to the square of the length. In addition, in situ TS measurements on live largehead hairtails were performed using a split beam echo sounder.

Development of Landsat-based Downscaling Algorithm for SMAP Soil Moisture Footprints (SMAP 토양수분을 위한 Landsat 기반 상세화 기법 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.49-54
    • /
    • 2018
  • With increasing satellite-based RS(Remotely Sensed) techniques, RS soil moisture footprints have been providing for various purposes at the spatio-temporal scales in hydrology, agriculture, etc. However, their coarse resolutions still limit the applicability of RS soil moisture to field regions. To overcome these drawbacks, the LDA(Landsat-based Downscaling Algorithm) was developed to downscale RS soil moisture footprints from the coarse- to finer-scales. LDA estimates Landsat-based soil moisture($30m{\times}30m$) values in a spatial domain, and then the weighting values based on the Landsat-based soil moisture estimates were derived at the finer-scale. Then, the coarse-scale RS soil moisture footprints can be downscaled based on the derived weighting values. The LW21(Little Washita) site in Oklahoma(USA) was selected to validate the LDA scheme. In-situ soil moisture data measured at the multiple sampling locations that can reprent the airborne sensing ESTAR(Electronically Scanned Thinned Array Radiometer, $800m{\times}800m$) scale were available at the LW21 site. LDA downscaled the ESTAR soil moisture products, and the downscaled values were validated with the in-situ measurements. The soil moisture values downscaled from ESTAR were identified well with the in-situ measurements, although uncertainties exist. Furthermore, the SMAP(Soil Moisture Active & Passive, $9km{\times}9km$) soil moisture products were downscaled by the LDA. Although the validation works have limitations at the SMAP scale, the downscaled soil moisture values can represent the land surface condition. Thus, the LDA scheme can downscale RS soil moisture products with easy application and be helpful for efficient water management plans in hydrology, agriculture, environment, etc. at field regions.

Modeling of Suspended Solids and Sea Surface Salinity in Hong Kong using Aqua/MODIS Satellite Images

  • Wong, Man-Sing;Lee, Kwon-Ho;Kim, Young-Joon;Nichol, Janet Elizabeth;Li, Zhangqing;Emerson, Nick
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2007
  • A study was conducted in the Hong Kong with the aim of deriving an algorithm for the retrieval of suspended sediment (SS) and sea surface salinity (SSS) concentrations from Aqua/MODIS level 1B reflectance data with 250m and 500m spatial resolutions. 'In-situ' measurements of SS and SSS were also compared with coincident MODIS spectral reflectance measurements over the ocean surface. This is the first study of SSS modeling in Southeast Asia using earth observation satellite images. Three analysis techniques such as multiple regression, linear regression, and principal component analysis (PCA) were performed on the MODIS data and the 'in-situ' measurement datasets of the SS and SSS. Correlation coefficients by each analysis method shows that the best correlation results are multiple regression from the 500m spatial resolution MODIS images, $R^2$= 0.82 for SS and $R^2$ = 0.81 for SSS. The Root Mean Square Error (RMSE) between satellite and 'in-situ' data are 0.92mg/L for SS and 1.63psu for SSS, respectively. These suggest that 500m spatial resolution MODIS data are suitable for water quality modeling in the study area. Furthermore, the application of these models to MODIS images of the Hong Kong and Pearl River Delta (PRO) Region are able to accurately reproduce the spatial distribution map of the high turbidity with realistic SS concentrations.

Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific

  • Kim, Hee-Young;Park, Kyung-Ae;Chung, Sung-Rae;Baek, Seon-Kyun;Lee, Byung-Il;Shin, In-Chul;Chung, Chu-Yong;Kim, Jae-Gwan;Jung, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor(GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to $0.93^{\circ}C$ and $0.05^{\circ}C$, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above $30^{\circ}N$. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

The Mechanical Properties of Rocks Distributed at a Metal Mine in Jeongseon (정선지역 철광산에 분포하는 암석의 역학적 특성)

  • Kim, Jong-Woo;Park, Chan;Kim, Ju-Hwan;Heo, Seok;Kim, Dong-Kyu;Lee, Dong-Kil;Jo, Young-Do;Park, Sam-Gyu
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.231-243
    • /
    • 2015
  • In this study, both in-situ stress measurements and a lot of laboratory rock tests were conducted at a metal mine in Jeongseon, Korea. The stress ratio obtained from in-situ stress measurements showed a tendency to decrease according to depth below surface and its average value was 1.10. The mechanical properties such as unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, shore hardness, friction angle and cohesion were investigated for the four different rocks mainly distributed at a studied mine, which were dolomite, felsite, granite and magnetite. The mechanical properties of the four different rocks were compared by means of statistical analyses, whereupon the felsite and the granite turned out to have more strength characteristics than the magnetite. The correlation of mechanical properties was also investigated, whereupon a few results against the general correlation were found out. The failure criteria of the four different rocks were finally discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion.

Field Measurements of Compaction-Induced Lateral Earth Pressure on a Reversed-T Type Retaining Wall (역 T형 옹벽에 뒤채움다짐으로 유발된 횡토압의 현장계측)

  • Jeong, Seong-Gyo;Lee, Man-Ryeol;Jeong, Jin-Gyo
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.5-18
    • /
    • 1995
  • A Compaction-induced lateral earth pressure was measured for a reversed-T type retaining wall of 4m high for three months. As a result of in-situ measurements, the lateral earth pressure fluctuated sharply with time after backfill, which was closely dependent upon the displacement of the retaining wall. The measured results showed big discrepancy with theoretical predictions made by existing theories, which are applicable to rigid wall. However, the in -situ data twas compared relatively well with those obtained by the finite element method. Analysis showed that the discrepancy may be caused by the displacement of the retaining wall during the compaction of the backfill.

  • PDF

Correlation Analysis Between Soil Moisture Retrieved from Satellite Images and Ground Network Measurements (위성관측 토양수분과 지상관측망 자료의 상관성 분석)

  • Kim, Gwang-Seob;Kim, Jong-Pil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.69-81
    • /
    • 2011
  • The soil moisture data of the National Aeronautics and Space Administration(NASA) and the Vrije Universiteit Amsterdam(VUA) in collaboration with NASA, retrieved from Advanced Microwave Scanning Radiometer-Earth observing system(AMSR-E) brightness temperature, were collected to evaluate the applicability of the remote sensed soil moisture in South Korea. The averages of the soil moisture by in-situ sensors, by NASA and by VUA-NASA are approximately 0.218, 0.119, and $0.402m^3/m^3$, respectively. This indicates that the soil moisture of NASA was underestimated and that of VUA-NASA was overestimated. The soil moisture products of VUA-NASA showed a better relationship with the in-situ data than that of NASA data. However, there are still limitations of C-band soil moisture measurements. To improve the applicability of satellite soil moisture measurements, bias correction and other post processings are essential using in-situ soil moisture measurements at various surface conditions.

Selection of Particulate Matter Observation Measurement Sites in Urban Forest Using Wind Analysis (바람장 분석을 통한 도시숲 미세먼지 관측 장비 설치 지점 선정)

  • Lee, Ahreum;Jeong, Su-Jong;Park, Chan-Ryul;Park, Hoonyoung;Yoon, Jongmin;Son, Junghoon;Bae, Yeon
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • Air pollution in urban areas has become a serious problem in the recent years. Especially, high concentrations of particulate matter (PM) cause negative effects on human health. Several studies suggest urban forest as a tool for improving air quality because of the capability of forests in reducing PM concentrations through deposition and adsorption using leaf area. For this reason, the National Institute of Forest Science plans to install in-situ observation stations for PM and biogenic volatile organic compounds (BVOCs) on a national scale to verify the net effect of forests on urban air pollution. To measure the quantitative change of PM concentrations due to the urban forest, stations should be located within and outside the forest area with respect to atmospheric circulation. In this study, we analyze the wind direction at the potential measurement sites to assess suitable locations for detecting the effect of urban forests on air quality in five cities (i.e. Gwangju, Daegu, Busan, Incheon, and Ilsan). This technical note suggests effective locations of in-situ measurements by considering main wind direction in the five cities of this study. A measurement station network created in the future based on the selected locations will allow quantitative measurements of PM concentration and BVOCs emitted from the urban forest and help provide a comprehensive understanding of the forest capabilities of reducing air pollution.