Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.1.096

Derivation of the Ambient Nitrogen Dioxide Mixing Ratio over a Traffic Road Site Based on Simultaneous Measurements Using a Ground-based UV Scanning Spectrograph  

Lee, Han-Lim (Department of Atmospheric Sciences, Yonsei University)
Noh, Young-Min (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Ryu, Jae-Yong (Radiation Research Division for Industry & Environment, Korea Atomic Energy Research Institute (KAERI))
Hwang, Jung-Bae (School of Electronics and Computer Engineering, Chonnam National University)
Won, Yong-Gwan (School of Electronics and Computer Engineering, Chonnam National University)
Publication Information
Journal of the Optical Society of Korea / v.15, no.1, 2011 , pp. 96-102 More about this Journal
Abstract
Simultaneous measurements using a scanning spectrograph system and transmissometer were performed for the first time over an urban site in Gwangju, Korea, to derive the ambient $NO_2$ volume mixing ratio. The differential slant column densities retrieved from the scanning spectrograph system were converted to volume mixing ratios using the light traveling distance along the scanning line of sight derived from the transmissometer light extinction coefficients. To assess the performance of this system, we compared the derived $NO_2$ volume mixing ratios with those measured by an in situ chemiluminescence monitor under various atmospheric conditions. For a cloudless atmosphere, the linear correlation coefficient (R) between the two data sets (i.e., data derived from the scanning spectrograph and from the in situ monitor) was 0.81; the value for a cloudy atmosphere was 0.69. The two sets of $NO_2$ volume mixing ratios were also compared for various wind speeds. We also consider the measurement errors, as estimated from an error propagation analysis.
Keywords
Spectrograph; Passive remote sensing; Trace gas measurement; $NO_2$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 A. C. Vandaele, C. Fayt, F. Hendrick, C. Hermans, F.Humbled, M. van Roozendael, M. Gil, M. Navarro, O.Puentedura, M. Yela, G. Brathen, K. Stebel, K. Tørnkvist,P. Johnston, K. Kreher, F. Goutail, A. Mieville, J. P. Pommereau,S. Khaikine, A. Richter, H. Oetjen, F. Wittrock, S. Bugarski,U. Frieß, K. Pfeilsticker, R. Sinreich, T. Wagner, G.Corlett, and R. Leigh, “An intercomparison campaign ofground-based UV-visible measurements of $NO_2$, BrO, andOClO slant columns: methods of analysis and results for$NO_2$,” J. Geophys. Res. 110, D08305, doi:10.1029/2004JD005423(2005).   DOI
2 D. J. Fish and R. L. Jones, “Rotational Raman scatteringand the ring effect in zenith-sky spectra,” Geophys. Res.Lett. 22, 811-814 (1995).   DOI   ScienceOn
3 S. Voigt, J. Orphal, and J. Burrows, “UV-visible absorptioncross-sections of $NO_2\;and\;O_3$ at atmospheric temperatures and pressures by FTS,” Proceedings of the First EuropeanSymposium on Atmospheric Measurements from Space(ESAMS-99), European Space Agency 443-465, DocumentESA WPP-161 (1999).
4 M. van Roozendael and C. Fayt, WinDOAS 2.1 SoftwareUser Manual (Inst. d’Aeron, Spatiale de Belg./Belg., Inst. voor Ruimte-Aeron., Uccle, 2001).
5 J. Stutz and U. Platt, “Numerical analysis and estimation ofthe statistical error of differential optical absorption spectroscopymeasurements with least-squares methods,” Appl.Opt. 35, 6041-6053 (1996).   DOI
6 W. C. Malm and G. Persha, “Comparison in the accuracyof a long-path transmissometer,” Aerosol Sci. Tech. 14,459-471 (1991).   DOI   ScienceOn
7 C. K. Lee, Y. J. Kim, H. Tanimoto, N. Bobrowski, U.Platt, T. Mori, K. Yamamoto, and C. S. Hong, “High ClOand ozone depletion observed in the plume of Sakurajimavolcano, Japan,” Geophys. Res. Lett. 32, L21809, doi:10.1029.2005GL023785 (2005).   DOI
8 H. Lee, Y. J. Kim, and C. Lee, “Estimation of the rate ofincrease in nitrogen dioxide concentrations from power plantstacks using an imaging-DOAS,” Environ. Monit. Assess.152, 61-70, doi:10.1007/s10661-008-0296-4 (2008).   DOI   ScienceOn
9 H. Lee, Y. J. Kim, J. Jung, C. Lee, K. P. Heue, U. Platt,M. Hu, and T. Zhu, “Spatial and temporal variations in $NO_2$distributions over Beijing, China measured by imagingdifferential optical absorption spectroscopy,” J. Environ. Manage.90, 1814-1823, doi: 10.1016/j.jenvman.2008.11.025 (2009).   DOI   ScienceOn
10 J. H. Lee, C. W. Lee, Y. M. Kim, and J. W. Kim,“Optomechanical design of a compact imaging spectrometerfor a microsatellite STSAT3,” J. Opt. Soc. Korea 13,193-200 (2009).   과학기술학회마을   DOI   ScienceOn
11 OPTEC, Model LPV-2 Long Path Visibility TransmissometerVersion 2: Technical Manual for Theory of Operation andOperating Procedures (Lowell, Michigan 1996).
12 H. Lee, J. Kim, J. Ryu, S. Kwon, Y. Noh, and M. Gu,“2-dimensional mapping of sulfur dioxide and bromineoxide at the Sakurajima volcano with a ground basedscanning imaging spectrograph system,” J. Opt. Soc. Korea14, 204-208 (2010).   과학기술학회마을   DOI   ScienceOn
13 U. Platt and J. Stutz, Differential Optical AbsorptionSpectroscopy, Principles and Applications (Springer Berlin,Heidelberg, Germany, 2008), doi: 10.1007/978-3-540-75776-4.   DOI
14 R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, “Solarflux atlas from 296 nm to 1300 nm,” National Solar Observatory1, NSO, Sunspot (1984).
15 N. Bobrowski, G. Hönninger, B. Galle, and U. Platt, “Detectionof bromine monoxide in a volcanic plume,” Nature 423, 273-276 (2003).   DOI   ScienceOn
16 A. Heckel, A. Richter, T. Tarsu, F. Wittrock, C. Hak, I.Pundt, W. Junkermann, and J. P. Burrows, “MAX-DOASmeasurements of formaldehyde in the Po-Valley,” Atmos.Chem. Phys. 5, 909-918 (2005).   DOI
17 N. Bobrowski, R. von Glasow, A. Aiuppa, S. Inguaggiato,I. Louban, O. W. Ibrahim, and U. Platt, “Reactive halogenchemistry in volcanic plumes,” J. Geophys. Res. 112,D06311, doi:10.1029/2006JD007206 (2007).   DOI
18 F. Lohberger, G. Honninger, and U. Platt, “Ground-basedimaging differential optical absorption spectroscopy ofatmospheric gases,” Appl. Opt. 43, 4711-4717 (2004).   DOI
19 C. von Friedeburg, I. Pundt, K. U. Mettendorf, T. Wagner,and U. Platt, “Multi-axis-DOAS measurements of $NO_2$during the BAB II motorway emission campaign,” Atmos.Environ. 39, 977-985 (2004).
20 K. P. Heue, A. Richter, M. Bruns, J. P. Burrows, C. V.Friedeburg, U. Platt, I. Pundt, P. Wang, and T. Wagner,“Validation of SCIAMACHY tropospheric $NO_2-columns$with AMAXDOAS measurements,” Atmos. Chem. Phys. 5,1039-1051 (2005).   DOI
21 P. Wang, A. Richter, M. Bruns, V. V. Rozanov, J. P.Burrows, K.-P. Heue, T. Wagner, I. Pundt, and U. Platt,“Measurements of tropospheric $NO_2$ with an airbornemulti-axis DOAS instrument,” Atmos. Chem. Phys. 5, 337-343(2005).   DOI
22 M. Bruns, S. A. Buehler, J. P. Burrows, A. Richter, A.Rozanov, P. Wang, K. P. Heue, U. Platt, I. Pundt, and T.Wagner, “$NO_2$ profile retrieval using airborne multi axisUV-visible skylight absorption measurements over CentralEurope,” Atmos. Chem. Phys. 6, 3049-3058 (2006).