• Title/Summary/Keyword: In situ analysis

Search Result 1,618, Processing Time 0.202 seconds

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Estimation In-Situ Rockfall Block Weight Distribution Using Scan-Line Survey Results and Examination its applicability in Practical Rockfall Analysis (선조사 결과에 의한 실제낙석무게분포의 추정과 설계적용성 검토)

  • Kim, Su-Chul;Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seok-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.639-648
    • /
    • 2005
  • Up to now, practical engineers applying simplicity value of rockfall block weight suggested in design manual without considering in-situ rockfall block weight which reflect joint characteristics. However, the size of rockfall block varies with joint spacing of discontinuities and influences over rockfall analysis results. In this paper, we estimate realistic rockfall block weight distribution using statistical invariances of joint spacing derived from scan-line survey result. And, we study whether this distribution is applicable in practical rockfall analysis directly. As the results of this study, rockfall analysis results that using rockfall block weight distribution estimated from scan-line survey show resonable and realistic outcomes.

  • PDF

A Study on the Behavior Prediction of Underground Structures by Back Analysis (역해석에 의한 지하구조체의 거동예측에 관한 연구)

  • 장정범;김문겸
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design underground structures safely and economically. Especially, the elastic modulus and the in-situ stresses are very important parameters in predicting the behavior of the underground structure. Therefore, the back analysis using the field measurement data is developed to determine accurately the elastic modulus and the in-situ stresses of the underground structural system in this study. A back analysis using the combined finite and boundary element is developed. It can consider the far field boundary condition and is efficient in computation. In this study, a back analysis is performed to predict behaviors of underground structures for the real construction site. The comparison between the results of the back analysis with field measurement data and the obtained material properties from the field test shows good agreement for the real construction site.

  • PDF

Application of Handheld Raman Spectroscopy for Pigment Identification of a Hanging Painting at Janggoksa Temple(Maitreya Buddha) (장곡사 미륵불 괘불탱의 채색 재료 분석을 위한 휴대용 라만 분광기의 적용성 연구)

  • LEE Na Ra;YOO Youngmi;KIM Sojin
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.216-228
    • /
    • 2023
  • The purpose of this study is to apply the handheld Raman spectrometer to identify the coloring materials used in a large Buddhist painting (of Maitreya Buddha) at Janggoksa Temple through cross-validation with HH-XRF. An in situ investigation was performed together with use of a digital microscope and HH-XRF analysis to verify the properties of pigments used in the gwaebul ("large Buddhist painting") via a non-destructive method. However, the identification of coloring materials composed of light elements and mixed or overlaid pigments is difficult using only non-destructive analysis data. Unlike in situ investigation, laboratory analysis often required samples yet the sampling is restricted to a small quantity due to the cultural heritage characteristic. Thus, it is necessary to develop a non-destructive in situ method to supplement the HH-XRF data. The large Buddhist painting at Janggoksa Temple was painted mainly using white, red, yellow, green, and blue colors. The Raman spectroscopy provides molecular information, while XRF spectroscopy provides information about elemental composition of the pigments. Analysis results identified various coloring materials: inorganic pigment, such as lead white, minium, cinnabar, and orpiment, as well as organic pigment such as gamboge and indigo. Therefore, it is possible to obtain more information for the identification of pigments; organic pigment and mixed or overlaid pigments, while at the same time minimizing the collection sample and simplifying the analysis procedure compared to previously used methods. The results of this study will be used as basic data for the analysis of painting cultural heritage through a non-destructive in situ method in the future.

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base (달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석)

  • Hong, Sungchul;Kim, Young-Jae;Seo, Myungbae;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2018
  • As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

A Study on Establishing the Subbase Compaction Control Method based on the In-situ Elastic modulus (현장탄성계수에 근거한 보조기층 다짐관리방안 연구)

  • Choi, Jun-Seong;Kim, Jong-Min;Han, Jin-Seok;Kim, Bu-Il
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • The resilient modulus which is presented mechanical properties of compacted subbase material is the design parameter on the Mechanistic - Empirical pavement design guide. The compaction control method on the Mechanistic - Empirical pavement design guide will be the way to confirm whether the in-situ elastic modulus measured after the compaction meets the resilient modulus which is applied the design. The resilient modulus in this study is calculated by the neural network suggested by Korea Pavement Research Program, and degree of compaction as the existing compaction control test and plate bearing capacity test(PBT) was performed to confirm whether the in-situ elastic modulus is measured. The Light Falling Weight Deflectometer(LFWD) is additionally tested for correlation analysis between each in-situ elastic modulus and resilient modulus, and is proposed correlation equation and test interval which can reduced overall testing cost. Also, the subbase compaction control procedure based on the in-situ elastic modulus is proposed using the in-situ PBT and LFWD test result.

Marker-Assisted Mating Applied in In-Situ Conservation of Indigenous Animals in Small Populations : (1) Choosing Mating Schemes for Maximum Heterozygosity

  • Wu, X.L.;Liu, R.Z.;Shi, Q.S.;Liu, X.C.;Li, X.;Wu, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.431-434
    • /
    • 2000
  • Maintaining maximum genetic variability is of critical importance with in-situ conservation of animal species in small populations. Marker-assisted mating (MAM) was suggested to achieve maximum heterozygosity in offspring populations. The aims of this research was to investigate and decide the effectiveness and promising types of MAM to achieve this goal. Analysis of variance with simulation data revealed that the heterozygosity in offspring populations was significantly determined by sire heterozygosity from mating of non-inbred parent animals, and significantly by sire heterozygosity and percent parental difference in offspring reproduced by inbred parents. Seven types of marker-assisted mating schemes were examined, in which offspring exhibited heterozygosity that was -0.01 to 7.37% below or above that from random mating of non-inbred parent animals, and 0.00 to 16.39% above that from random mating of inbred parent animals. The great increase in offspring heterozygosity was observed with mating by tandem maximizing sire heterozygosity, percent parental difference, and dam heterozygosity. Random mating resulted in fluctuation of offspring heterozygosity. These results suggested that MAM was a promising method for maintaining maximum offspring variability in in-situ conservation of animal species in small populations.

The Identification of Limiting Nutrients Using Algal Bioassay Experiments (ABEs) in Boryeong Reservoir after the Construction of Water Tunnel

  • Ku, Yeonah;Lim, Byung Jin;Yoon, Jo-Hee;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.558-566
    • /
    • 2018
  • The objective of the study was to determine nutrition regime and limitation in the Boryeng Reservoir where there's a water tunnel between Geum River and the reservoir. Evaluation was conducted through in situ algal bioassay experiments (in situ ABEs) using the cubitainer setting in the reservoirs. For in situ ABEs, we compared and analyzed variations in chlorophyll-a (CHL-a) and phosphorus concentrations in Boryeong Reservoir before and after the water tunnel construction. We then analyzed the nutrient effects on the reservoir. Analysis for nitrogen and phosphorus was done in the three locations of the reservoir and two locations of the ABEs. The in situ ABEs results showed that phosphorous and Nitrogen, the primary limiting nutrient regulating the algal biomass was not limited in the system. The treatments of phosphorus or simultaneous treatments of N+P showed greater algal growth than in the control of nitrate-treatments, indicating a phosphorus deficiency on the phytoplankton growth in the system. The water from the Geum River had 5 times higher total phosphorus (TP) than the water in the reservoir. Efficient management is required as pumping of the river water from Geum River may accelerate the eutrophication of the reservoir.