Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.
Conventional pharmacology has followed the notion of the reductionist 'single target selective drug paradigm'. Network pharmacology has made conventional pharmacology newer while meeting the challenges of this era. Conventional pharmacological methods have not solved the problems of Korean Medicine. For this reason, Network pharmaco- logy needs urgently and desperately for Korean medicine research. However, the information on drug interactions in herbal medicines is complex and less known. There are still some hurdles before network pharmacology emerges, one factor which constitutes Korean medicine research. There is a need to look for solutions other than inheriting the network pharmacology to solve problems that Korean medicine has before. The way of 'in silico' research should be the best to meet this challenge. With the help of 'in silico' research, there might have been emerged new findings of experimental data in Korean Medicine. If 'herbalomics' has been close to foundation through the 'in silico' method, it will contribute to the formation of modern Korean medicine and, simultaneously, come to a foundation for revitalizing exchanges with orthodox Western medicine. Eventually, it ends with a significant profitable and healthy result for the patients.
Small molecule tyrosine kinase inhibitors targeting HER 2 receptors have emerged as an important therapeutic approach in inhibition of downstream proliferation and survival signals for the treatment of breast cancers. Recent drug discovery efforts have demonstrated that naturally occurring polyphenolic compounds like delphinidin have potential to inhibit proliferation and promote apoptosis of breast cancer cells by targeting HER2 receptors. While delphinidin may thus reduce tumour size, it is associated with serious side effects like dysphonia. Owing to the narrow therapeutic window of delphinidin, the present study aimed to identify high affinity compounds targeting HER2 with safer pharmacological profiles than delphinidin through virtual screening approaches. Delphinidin served as the query parent for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. The compounds retrieved were further subjected to Lipinski and Verber's filters to obtain drug like agents, then further filtered by diversity based screens with a cut off of 0.6. The compound with Pubchem ID: 91596862 was identified to have higher affinity than its parent. In addition it also proved to be non-toxic with a better ADMET profile and higher kinase activity. The compound identified in the study can be put to further in vitro drug testing to complement the present study.
Milman, Boris L.;Ostrovidova, Ekaterina V.;Zhurkovich, Inna K.
Mass Spectrometry Letters
/
v.10
no.3
/
pp.93-101
/
2019
Algorithms and software for predicting tandem mass spectra have been developed in recent years. In this work, we explore how distinct in silico $MS^2$ spectra are predicted for isomers, i.e. compounds having the same formula and similar molecular structures, to differentiate between them. We used the CFM-ID 2.0/3.0 predictor with regard to (a) test compounds, whose experimental mass spectra had been randomly sampled from the MassBank of North America (MoNA) collection, and to (b) the most widespread isomers of test compounds searched in the PubChem database. In the first validation test, in silico mass spectra constitute a reference library, and library searches are performed for test experimental spectra of "unknowns". The searches led to the true positive rate (TPR) of ($46-48{\pm}10$)%. In the second test, in silico and experimental spectra were interchanged and this resulted in a TPR of ($58{\pm}10$)%. There were no significant differences between results obtained with different metrics of spectral similarity and predictor versions. In a comparison of test compounds vs. their isomers, a statistically significant correlation between mass spectral data and structural features was observed. The TPR values obtained should be regarded as reasonable results for predicting tandem mass spectra of related chemical structures.
Receptor-oriented pharmacophore-based in silico screening is a powerful tool for rapidly screening large number of compounds for interactions with a given protein. Inhibition of the enzyme catechol-Omethyltransferase (COMT) offers a novel possibility for treating Parkinson's disease. Bisubstrate inhibitors of COMT containing the adenine of S-adenosylmethionine (SAM) and a catechol moiety are a new class of potent and selective inhibitor. In the present study, we used receptor-oriented pharmacophore-based in silico screening to examine the interactions between the active site of human COMT and bisubstrate inhibitors. We generated 20 pharmacophore maps, of which 4 maps reproduced the docking model of hCOMT and a bisubstrate inhibitor. Only one of these four, pharmacophore map I, effectively described the common features of a series of bisubstrate inhibitors. Pharmacophore map I consisted of one hydrogen bond acceptor (to Mg2+), three hydrogen bond donors (to Glu199, Glu90, and Gln120), and one hydrophobic feature (an active site region surrounded by several aromatic and hydrophobic residues). This map represented the most essential pharmacophore for explaining interactions between hCOMT and a bisubstrate inhibitor. These results revealed a pharmacophore that should help in the development of new drugs for treating Parkinson's disease.
Gastric cancer as one of the most common cancers worldwide has various genetic and environmental risk factors including Helicobacter pylori (H.pylori) infection. Recently, loss of a tumor suppressor gene named promyelocytic leukemia (PML) has been identified in gastric cancer. However, no mutation has been found in this gene in gastric cancer samples. Cag A H.pylori protein has been shown to exert post transcriptional regulation of some tumor suppressor genes. In order to assess such a mechanism for PML degradation, we performed in silico analyses to establish any interaction between PML and Cag A proteins. In silico interaction and docking studies showed that these two proteins may have stable interactions. In addition, we showed that imatinib kinase inhibitor can restore PML function by inhibition of casein kinase 2.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.10
/
pp.823-829
/
2005
We have newly constructed an in silico model of fermentative metabolism for Lactococcus lactis in order to analyze the characteristics of metabolite flux for dynamic network. A rigorous mathematical model for metabolic flux has been developed and simulation researches have been performed by using GEPASI program. In this simulation task, we were able to predict the whole flux distribution trend for lactate metabolism and analyze the flux ratio on the pyruvate branch point by using metabolic flux analysis(MFA). And we have studied flux control coefficients of key reaction steps in the model by using metabolic control analysis(MCA). The role of pyruvate branch seems to be essential for the secretion of lactate and other organic byproducts. Then we have made an effort to elucidate its metabolic regulation characteristics and key reaction steps, and find an optimal condition for the production of lactate.
The intracellular metabolic fluxes can be calculated by metabolic flux analysis, which uses a stoichiometric model for the intracellulal reactions along with mass balances around the intracellular metabolites. In this study, metabolic flux analyses were carried out to estimate flux distributions for the maximum in silico yields of various metabolites in Escherichia coli. The maximum in silico yields of acetic acid and lactic acid were identical to their theoretical yields. On the other hand, the in silico yields of succinic acid and ethanol were only 83% and 6.5% of their theoretical yields, respectively. The lower in silico yield of succinic acid was found to be due to the insufficient reducing power. but this lower yield could be increased to its theoretical yield by supplying more reducing power. The maximum theoretical yield of ethanol could be achieved, when a reaction catalyzed by pyruvate decarboxylase was added in the metabolic network. Futhermore, optimal metabolic pathways for the production of various metabolites could be proposed, based on the results of metabolic flux analyses. In the case of succinic acid production, it was found that the pyruvate carboxylation pathway should be used for its optimal production in E. coli rather than the phosphoenolpyruvate carboxylation pathway.
Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
Animal Bioscience
/
v.37
no.3
/
pp.522-535
/
2024
Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.4
/
pp.483-492
/
2021
Agastachis Herba (AH) to treat anorexia and nausea and its antidiabetic efficacy was recently reported. This study examined the antioxidant activities and chemical constituents of AH and predicted the target proteins of each compound using in silico approaches. The results showed that EC50 values of AH methanol extract for DPPH and ABTS radical scavenging were 78.6 ㎍/mL and 31.0 ㎍/mL, respectively. Compared to the EC50 values of ascorbic acid (9.9 ㎍/mL, 5.2 ㎍/mL), the AH methanol extract possessed excellent antioxidant activities. Rosmarinic acid, tilianin, agastachoside, and acetin were confirmed as the major compounds of extracts by qualitative analysis performed with HPLC-PDA-MS/MS. The antidiabetic target proteins of these compounds were predicted by applying a structural similarity and inverse docking methodology using a DIA-DB server. The resulting target proteins were PPAR-γ, DPP IV, glucokinase, α-glucosidase, SGLT2, aldose reductase, and corticosteroid 11-beta-dehydrogenase, some of which have already been proven experimentally as target proteins. Therefore, the in silico methods can be considered valid. Finally, AH were extracted with various solvents to determine the optimal conditions for the extraction of active components. Methanol among organic solvents and 80% ethanol in ethanol-water mixtures were identified as the most effective solvent for the extraction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.